Green skills in the field of Social Economy

Katarzyna Kowalska
Elżbieta Szczygieł
Paulina Szyja
Renata Śliwa

Kraków 2022
“Green skills in the field of Social Economy”
aut. Katarzyna Kowalska, Elżbieta Szczypgieł, Paulina Szyja, Renata Śliwa

Scientific Reviewer: prof. Teresa Piecuch, DSc, PhD, Rzeszow University of Technology

This publication is an outcome of a project “Harnessing the potential of the Social Economy towards a green transformation through the establishment of Socially Driven Green Labs within Universities” (SDG Labs)
Project number: 2021-1-PL01-KA220-HED-000032077

Acknowledgements: The authors would like to thank the Project’s Partners Institutions.

Cover picture: Pexels-on pixabay.com

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

ISBN 978-83-8084-892-4
DOI: 10.24917/9788380848924

Wydawnictwo Naukowe Uniwersytetu Pedagogicznego
ul. Podchorążych 2,
30-084 Kraków, POLAND

Kraków 2022

The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.
Table of contents

Introduction ... 4
Chapter 1. Genesis of green transformation in the European Union 5
Chapter 2. The role of the public sector in relation to other market actors in the green transition .. 10
Chapter 3. The role of social economy entities ... 15
Chapter 4. Green skills as an element of green transformation .. 20
Chapter 5. Public institutions for green skills development .. 29
Chapter 6. The role of education in development of green skills 32
Chapter 7. Frameworks of the concept of SDG Labs – forming a laboratory space 35
Chapter 8. Research results analysis ... 39
Chapter 9. The theoretical model of the SDG labs programme .. 92
Conclusions .. 95
Bibliography .. 97
List of elements .. 104
Appendixes ... 106
Questionnaires for target groups .. 106
In-depth interview with representatives of social economy entities 114
Introduction

Climate change has brought the irresistible pressure toward a paradigm shift focused more on the complex consequences of environmental and social crises. Inclusive-ecological-transition-driven role of the Social Economy sector (social enterprises, cooperatives, mutual societies, non-profit associations) is concentrated in so-called green social economy entities (SEEs). By introducing and developing innovative solutions green social economy entities operate in such economy areas as circular economy, renewable energy, sustainable agriculture, social housing. Their presence is manifested also on the level of intersectoral cooperation (with enterprises, citizens). Against this background the role of education emerges which is of paramount importance to harness the full potential of the SEEs toward a green transition. Higher Education Institutions have a particular role to play in building students’ green knowledge, skills, and competences so as to upscale the role of the SE in the green sector. There are deficiencies of Higher Education Institutions in terms in aligning curricula and syllabuses to the requirements of environment sustainability, on the one hand, and the increasing demand for green skills (as transversal competences) in SEEs, on the other hand.

The adjustment towards green transition taking place in SEEs is assumed to be the central issue of the paradigm shift, and the innovation in education (training programmes, workshop methodologies such as simulation-based learning) is a key driver.

This monograph is the result of research in the project entitled “Harnessing the potential of the Social Economy towards a green transformation through the establishment of Socially Driven Green Labs within Universities” (SDG Labs) and consists of 9 chapters. The first is devoted to the genesis of the green transformation in the European Union with a presentation of the key concepts related to it. The second chapter presents the role of the public sector in relation to other market actors in the green transition process. This outlines the framework for the role of the social economy in this process, which is discussed in detail in chapter three. In this way, the key issues from the point of view of the green transformation process are presented. Chapter four is devoted to the green skills component of this transformation, where their characteristics are outlined. Chapter five presents the activities of public institutions for the development of green skills. The sixth chapter is devoted to the role of education in green skills development. Based on this, a framework for the concept of SDG Labs as a laboratory space for green skills development in the social economy sphere was developed, which formed the content of the seventh chapter. The eighth chapter was a presentation of the research methodology and results of the international surveys carried out within the project among its three target groups: social economy actors, social economy academics and social economy students. The final ninth chapter dealt with the development of a theoretical model for the SDG labs programme, which will be the subject of further project activities.

The authors are aware of the introductory nature of some of the issues raised here, which, however, arose from the need to initiate a wide-ranging discussion on green skills and the strengthening of the capacity of social economy actors to be part of the green transformation of the whole economy.
Chapter 1. Genesis of green transformation in the European Union

November 2008 New Economic Foundation has published report with telling title: “Triple Crunch. Joined-up solutions to financial chaos, oil decline and climate change to transform the economy”\(^1\). This was a reference to the collapse of the financial markets starting in 2007, the rise of oil prices on world stock exchanges in the middle of the same year and the ongoing climate change, to which, according to the Intergovernmental Panel on Climate Change, humans have been contributing as a result of warming the atmosphere, ocean and land\(^2\). In the aforementioned study of the New Economics Foundation, it was stated: “(...) instead of making the usual predictable trade-offs, a new approach could be taken, one that joins up the need to cope with the impacts of peak oil and climate change, as well as kick-starting the economy. A unique opportunity has presented itself to tame and control the financial system so as to put it at the service of our society, to set us on a more sustainable, secure and fairer trajectory”\(^3\). Since 2008, it has been held discussions in various forums on the causes, particularly of the financial and real economy crisis, and the search for ways out of it, with a view to shaping the development framework in the long term, taking into account the issue, that the basis of management must be changed. For example, United Nations Environment Programme has encouraged countries to introducing “green stimulus packages”\(^4\). In the European Union, in the period 2008 – 2009, there were adopted two key documents, which significantly referred to the postulates of UNEP. The first one - “A European Economic Recovery Plan”, which one of two key pillars was smart investment defined as “investing in the right skills for tomorrow's needs; investing in energy efficiency to create jobs and save energy; investing in clean technologies to boost sectors like construction and automobiles in the low-carbon markets of the future; and investing in infrastructure and inter-connection to promote efficiency and innovation”\(^5\). Therefore, it can be pointed out that the European Union was dealing with “sustainable recovery”. According to the International Energy Agency\(^6\): “the 2008 European Economic Recovery Plan included a substantial green stimulus directed to several areas, including:

- energy efficiency, with the aim of creating jobs and saving energy

— investment in clean technologies to boost sectors like construction and low-carbon automobiles
— infrastructure and interconnections to promote efficiency and innovation”.

The second document, it was strategy called “Europe 2020”, in the foreword to which the then head of the European Commission Jose Manuel Barroso stated: “The crisis is a wake-up call, the moment where we recognise that "business as usual" would consign us to a gradual decline, to the second rank of the new global order. This is Europe’s moment of truth. It is the time to be bold and ambitious”. In the document have been emphasized not only the need to revive the economy in the short term, but also drawing attention to the necessity of shaping “sustainable future”7. “Europe 2020 puts forward three mutually reinforcing priorities:

— Smart growth: developing an economy based on knowledge and innovation.
— Sustainable growth: promoting a more resource efficient, greener and more competitive economy.
— Inclusive growth: fostering a high-employment economy delivering social and territorial cohesion.
— The EU needs to define where it wants to be by 2020. To this end, the Commission proposes the following EU headline targets:
 — 75% of the population aged 20-64 should be employed.
 — 3% of the EU’s GDP should be invested in R&D.
 — The "20/20/20" climate/energy targets should be met (including an increase to 30% of emissions reduction if the conditions are right).
 — The share of early school leavers should be under 10% and at least 40% of the younger generation should have a tertiary degree.
 — 20 million less people should be at risk of poverty”8.

The Strategy had reference to the three orders of sustainable development. It was an action plan for Europe, setting a new framework for social and economic development. It was also related to the transformation – green transformation. The green transformation is highlighted and justified by green limits (environmental limits) identified with air, water, land, biodiversity9. According to K. Cheba, I. Bążk, K. Szopik-Depczyńska, G. Ioppolo: “Green transformation has become one of the most important directions in the further development of the world. It involves the development of green technologies and the creation of legal regulations enforcing, for example, saving energy or reducing the emissions of greenhouse gases, as well as any other activities aimed at changing society’s attitude towards the acceptance of – frequently more expensive but more environment-friendly – technological solutions and legal norms. Thus green transformation can be defined as combining economic growth with caring about the environment in order to guarantee a high quality of life for present and future generations at the level which is attainable due to civilisational development, as well as to an effective and rational use of the available resources”10.

8 Ibidem.
However much more appropriate word is “transition”, because “transition is a term used to describe conversion (evolution) from the existing model of economy and finance towards one based on increased social and environmental responsibility”11. The issue of green transition is related with new approach to economic growth - “green growth”. According to OECD it “means fostering economic growth and development, while ensuring that natural assets continue to provide the resources and environmental services on which our well-being relies”12. Then, “green growth consists of four fundamental dimensions:

- efficient and sustainable use of resources, including energy, water, land, and materials;
- protection of natural capital and recognition of the limits of Earth system processes;
- green economic opportunities for investment, trade, employment, and innovation; and
- inclusive growth which ensures access to basic services and resources, health and safety, social equality, and social protection”13.

There are 10 key priorities for green growth:

1) Shifting away from and replacing the conventional, resource-intensive model of economic growth with green growth;
2) Implementation of appropriate green growth strategies, policies, and plans;
3) The green transformation has to be just, fair, and inclusive;
4) Achieving zero-emissions targets;
5) Embracing sustainable energy and scaling back the use of fossil fuels—or replacing them altogether;
6) Reversing land degradation and the decline of ecosystem and biodiversity;
7) Smarter, cleaner, and more efficient and productive ways of managing water resources;
8) Green transformation in cities;
9) Greening infrastructure and construction in Cities;
10) Green technology disruptions and smart solutions14.

In literature we can find the term “green economy”, which we can considered as the ultimate goal of green transformation in the socio-economic dimension. “UNEP defines a green economy as one that results in improved human well-being and social equity, while significantly reducing environmental risks and ecological scarcities”15. Achieving this goal requires a transition based on shaping: low-carbon economy, circular economy and blue economy (Scheme 1).

14 Ibidem, p. 7-18.
A low-carbon economy concerns reduction of greenhouse gas emissions, development of renewable energy sources and increase of energy efficiency. In turn, “The circular economy is a model of production and consumption, which involves sharing, leasing, reusing, repairing, refurbishing and recycling existing materials and products as long as possible. In this way, the life cycle of products is extended”\(^{16}\). Then “the sustainable blue economy encompasses all sectoral and cross-sectoral economic activities related to the oceans, seas and coasts. It comprises emerging sectors and economic value based on natural capital and non-market goods and services through the conservation of marine habitats and ecosystem services”\(^{17}\).

The process of green transition requires a systemic approach requiring the involvement of the following actors: governments, local governments, enterprises and non-governmental organizations, local social communities. Each of them has instruments (in different forms), take activities that allow to undertake concrete actions related to the implementation of the transition processes (Scheme 2).

Scheme 2. Subjects involved in green transformation and their corresponding instruments

<table>
<thead>
<tr>
<th>Subjects</th>
<th>governments</th>
<th>Local governments</th>
<th>enterprises</th>
<th>Non-governmental organizations</th>
<th>Local social communities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruments /activities</td>
<td>Law instruments</td>
<td>Law Instruments</td>
<td>Financial Capital</td>
<td>Education</td>
<td>Involvement of different social groups in different projects based on identified problems and opportunities for action on the level of group cooperation</td>
</tr>
<tr>
<td>Financial instruments</td>
<td>Financial Instruments</td>
<td>Innovation potential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strategies, plans and programs of economic sectors</td>
<td>Development strategies for the region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administrative structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Author’s own elaboration

In literature, in Internet you can find a huge number of examples of projects and good practices in the field of environmentally friendly actions taken by local authorities, NGOs, local communities as well as enterprises, ranging from those related to changing the urban space to a sustainable one, environmentally friendly production processes to eco-innovations. However, it is worth noting that the greatest range and diversity of instruments for green transformation is available to the state. In turn, the greatest potential for innovation should be identified with enterprises. Local communities and NGOs are characterized by a huge involvement in various types of environmentally friendly projects. Mentioned subjects have potential to introduce changes in process of green transition. However, we cannot forget about one more specific group of entities, i.e. social economy entities.
Chapter 2. The role of the public sector in relation to other market actors in the green transition

The green transformation is nowadays implemented by promoting the idea of responsibility in the activities of market entities, including abandoning the model of linear production and consumption (achieving economic growth at the expense of excessive exploitation of resources and generation of waste) in favour of a closed-circuit economy (LCA; circular economy). In the alternative concept of the CE (Circular Economy), the aim is to avoid the generation of waste and to keep raw materials in the economy for as long as possible. The CE reduces the human impact on the environment and allows significant values to be achieved for businesses, among others, mainly in the form of savings, thus benefiting the economy as a whole.

CE provides many solutions for value creation not based on the consumption of scarce resources by identifying possible courses of action for a circular economy, these are: regeneration; sharing; optimisation; closing cycles; virtualisation and exchange\(^\text{18}\). Due to existing market failures, the transition to a CE faces numerous barriers, which force aid (state intervention) in this area. Bottom-up initiatives alone are not sufficient. The implementation of a circular economy requires a systemic view of the LFG, in terms of complex relations and combinations of actors in a given sector (e.g. B2B), in cross-sectoral (e.g. Private Sector-Enterprises) and multi-sectoral (e.g. Private Sector-Enterprises-NGOs-Households) terms.

State intervention therefore responds to existing market failures and needs. This failure materialises in the form of generating externalities without incurring additional/sufficient financial outlays (e.g. environmental pollution, health costs for the local community)\(^\text{19}\). The traditional public instruments used for environmental and social issues are instruments of command (orders, prohibitions e.g. standards, specific product characteristics) and control (including enforcement). It should be noted, however, that such instruments do not introduce incentives to perform beyond the set target, and this means that they do not promote the development of innovation for environmental transformation\(^\text{20}\). This is a fundamental issue, because CE innovations are a necessary element (recipe) of the discussed transformation. These innovations are not only products, but they are also new ways of doing business, new ecosystems of products and services, new types of interaction between companies and their stakeholders based on trust, diffusion of innovation and reduction of transaction costs.

CE requires efficient solutions, allowing to achieve savings, taking into account the principles of sustainable development, including environmental issues. From this perspective, innovations are also new configurations of products and services that increase the effectiveness of the relationship between the product and the user. Designing and implementing innovations understood in such a way makes it possible to obtain key values necessary to achieve market advantage of entities on the market, i.e. savings and minimisation of reputation risk. The importance of both values and the possibility to achieve

\(^{20}\) Ibidem.
them within the framework of CE innovations is a basic argument for the public sector in supporting green initiatives, and for companies - a chance to adapt to new conditions of competition and development in the long term. For households, in turn, it is an opportunity to improve their quality of life, not only in economic terms, but also in environmental and social terms. Directing the market towards new green business opportunities requires an additional public push in the form of improved market instruments (taxes, subsidies, allowances and licences for producers and consumers) and a process of education for CE and innovation for its implementation.

The dissemination of the above information, with examples, of the possibilities of embarking on the path of CE, is a key task of the public sector. Particular efforts should be directed towards the SME sector. They, due to their specific realities, need information and financial support. These entities are of particular economic (supplying public budgets, links to the local market, cooperation of this group of entities with large companies, usually transnational corporations (TNCs), but also environmental) importance. Their influence on the possibilities of green transformation is enormous, while the scale of their involvement in CE in Poland is still small.

SMEs on the Polish market are in the initial phase of implementing the CE concept in their activities. There is a widespread belief among local enterprises that responsible business orientation is the domain of MNCs (Multinational Corporations), equipped with adequate capital and employee facilities. Entrepreneurs who aspire to such relations should know that sustainable innovation in SMEs is practically feasible, profitable even in the short term and often required by large companies operating in the market. Using the example of the Polish company Mega, which produces furniture under the brands of large companies, it can be seen that the optimisation of the automatic sanding process, in order to reduce the energy intensity of the process, reduce the amount of waste and expand the offer with FSC Reclaimed Wood certified products, allowed to reduce operating costs and ensure a more durable cooperation with the client\(^{21}\).

The dissemination of this knowledge (based on examples) is, among others, "in the hands" of the public sector, with a large participation (in cooperation) with the so-called third sector. Thus, there is a strong need for public education and communication about the effects of current consumption, available solutions, and benefits of changes for ecological transformation (especially through the use of personalised information, or the so-called social proof of rightness)\(^{22}\). There is also a need to increase the quality and credibility of environmental impact information provided by the selling party and to ensure that it can be verified by the buying party (using appropriate instruments of proof).

The public sector, in cooperation with the financial sector, should also influence the financing of projects (their availability) that implement the assumptions of CE - support the creation of special financial instruments for companies (CE projects often escape standard assessment, which makes them more risky) or promote lowering the commission on loans (refunding the

commission after verifying whether the environmental goal has been achieved by the company)23.

Among the so-called urgent needs, which are the responsibility of the public sector, is also the need to invest in improving the vocational education system, so important for circular business models. Not without significance, for the development of sustainable innovation, is also the need to increase spending on research and the development of research partnerships, also internationally.

Socially responsible public procurement is also crucial for the development of CE. This is a very important (high impact potential) area for creating circular market needs and stimulating green innovation. Procedures in which public bodies, such as government departments, local and regional governments or public law bodies, purchase works, goods or services from companies can and should support the transition to a circular economy. Closed-loop public procurement can be defined as a procedure for public authorities to purchase works, goods, or services to ensure that energy and material cycles within supply chains are closed, with negative environmental impacts and waste generation throughout the life cycle minimised or, at best, eliminated24. Procurement to help close the loop in the economy is also intended to achieve the sustainable development goals set out in the UN 2030 Agenda for Sustainable Development. In particular, Goal 12 - Sustainable Consumption and Production - includes a specific objective to promote sustainable procurement practices in line with national policies and priorities. As of 28 July 2016, when the Act of 22 June 2016 amending the Public Procurement Law (Journal of Laws 2016, item 1020) transposing the provisions of the Directive 2014/24/EU of the European Parliament and of the Council of 26 February 2014 on public procurement into the Polish legal system, it became a more effective tool for socially responsible public procurement25. The EU directive as well as the act amending the Public Procurement Law address the issue of socially responsible public procurement in a much broader way. According to the developed definition, responsible public procurement refers to the stages of public procurement that consider one or more of the following aspects: promotion of decent work, respect for human rights and labour law, support for social inclusion, support for the social economy and small and medium enterprises, as well as promotion of equal opportunities and the principle of "accessible and designed for all". These objectives shall be achieved, inter alia, by taking into account the issues of fair and ethical trade and compliance with the principles of the Treaty and the Directives on public procurement. As already mentioned, public procurement can play a key role in the transition to a circular economy. By applying closed-loop principles to procurement, it is easier for public sector purchasers to adopt a holistic approach to sustainability - from the initial stages of the procurement process through to the end of life of the product - while also taking advantage of opportunities to make savings.

The idea of considering social aspects at the national level was shaped, i.a. by the Strategy "Efficient State 2020". This document indicates that in order to effectively manage material and financial resources, public administration offices should put emphasis on the dissemination of already existing legal solutions concerning the inclusion of social issues (the

\begin{itemize}
 \item 23 Deloitte, (2018). \textit{Closed loop - open opportunities, Circular economy in Poland.}
 \item 24 European Commission, (2018). \textit{Public procurement for a circular economy. Good practise and guidance},
 \item 25 Ibidem.
\end{itemize}
so-called social clauses), environmental aspects (the so-called green public procurement) in the tender procedures and increase the participation of small and medium-sized enterprises in the public procurement system.

A key issue relates to the contracting methods that a purchasing organisation can use to ensure a closed loop in the economy. These include take-back clauses by the supplier providing that the product, at the end of its life, is returned to the supplier for re-use, remanufacture or recycling, and product-service schemes where the contract covers both products and services. When deciding on public procurement to help close the loop in the economy, one must obviously take into account both the supplier systems and the technical specifications of the product, and the material used in its production.

Poland in terms of responsible procurement is at a rather early stage, but the declarations and ambitions of officials allow us to look at this issue optimistically. Especially that there are many positive and verified examples of the so-called old EU countries, where responsible procurement has brought the intended effect. These include the following cities: Bremen (replacement of the authority's vehicle fleet with a car-sharing service); Turin (closed loop concept in catering for schools); Berlin (use of concrete for construction), or Vaasa (use of biogas buses).

On the Polish ground, public policies aimed at implementing the transformation towards responsibility, CE in the activities of market entities can be classified as follows:

1. **Tools affecting financial efficiency:**

 - **Empowering:** a number of legal acts regulating the relations between the enterprise and the environment and society (e.g. KP, KC, Environmental Protection Law).

 - **Facilitating:** CIT relief for donations to public benefit organisations; competitions for socially responsible enterprises; amendment to the Public Procurement Law and allowing the criterion of environmental and social impact to be used by bidders (including local governments) in bid evaluation; participation of the National Fund for Environmental Protection and Water Management in financing investments that help reduce negative environmental impact.

 - **Partnering:** creation of a stock exchange index e.g. WIG RESPECT - impact on access to capital; cooperation with NGOs in supporting responsible trade; possibility of using sustainable procurement principles in the selection of partners for projects implemented as public-private partnerships.

2. **Tools not affecting financial efficiency:**

 - **Empowerment:** amendment of the Accounting Act implementing Directive 2014/95/EU on environmental and social impact reporting into Polish law.

 - **Facilitation:** training courses (organised by agencies at governmental level, by local governments); provision of materials, expert duty hours, consultation points (organised at governmental level, by local governments).

 - **Partnership:** programme "Social responsibility of science".

 - **Support:** in the form of declarations and inclusion of CSR in long-term plans, e.g. Inclusion of CSR in the Strategy for Responsible Development until the end of 2020 (with an outlook to 2030); establishment of teams whose competences and
responsibilities include development of CSR and CE in Poland (ministries), adaptation of socially responsible practices in the activities of public agencies, including the Central Statistical Office, the Office of Competition and Consumer Protection; the document "Good practices in corporate social responsibility in companies with State Treasury shareholding" as guidelines of the Ministry of the State Treasury; promotion of CSR in services operated by the government (e.g. www.biznes.gov.pl; www.rodzinaipraca.gov.pl).

Although public policy on social responsibility and circularity presents itself as comprehensive, these tools are relatively few. Doubts also arise about their power to influence market actors. Too little information reaches the SME sector about circularity and its benefits. There are too few financial incentives for this group of actors to seek innovations for the benefit of CE. An important role for the state in promoting social entrepreneurship is indicated by supporting the creation of local welfare networks including schools and other education establishments, health, employment and enterprise schemes within locality. Moreover, government can appoint groups of social entrepreneurs to test new ideas (i.e. vocational school supplements, job search programs, health contracts, education entitlements) to develop know-how within the national social policy framework.

28 Ibidem, p. 87.
Chapter 3. The role of social economy entities

Social enterprises by the provision of small-scale, low-cost solutions that are adapted to the local context can help the public sector to be innovative and more cost-effective\(^{29}\). Self-sustainability, value-creation, quick assessment of the unfulfilled needs and aspirations of society followed by innovations and adaptations, establishment of self-supporting organization aimed toward earning profit through collective efforts of their teams to create social benefit was a response to the slowdown and limitation of the public sector to fulfil social needs\(^{30}\), distortion in the distribution of income\(^{31}\), and the increasing employment of business strategies to address social problems while generating revenues. The rise of Social Enterprise (SE) as linked to the concept of “social economy” has been representing an adaptation move by civil society to respond to a complex and dynamic environment. Social Enterprises have been the fastest growing category of organizations\(^{32}\) as the consequence of the social problems being deployable by managerial practices. Social entrepreneurship gained practical relevance in 1970s and 1980s, and in 1990s attracted governments and academia\(^{33}\). The success of social entrepreneurs such as Muhammad Yunus (the Grameen Bank for Microfinance founder, 2006 Nobel Peace Prize Winner), Jeffrey Skoll (the Skoll Foundation founder, one of 2006 Time Magazine’s 100 People of the Year) attracted immense media attention. The new type of entrepreneurship that emerged in various part of the world acknowledged the pressure toward the objective of more social wealth creation rather than economic wealth\(^{34}\). The claims of some researchers to expect further reaching economic effects as the consequence of social enterprise activities and contributing to more growth, less poverty and improved large-scale social development, have been also present\(^{35}\). Therefore, social enterprise idea/concept was also vital within corporate strategies widely

known as Corporate Social Responsibility, Corporate Social Innovation, or an accounting framework named the Triple Bottom Line36. Exploration process by the means of trial-and-error with the expectation to advance economic, social and environmental progress of the society and increasing the value of common good through the discovery, development, selection, failure and destruction, and new ways of creating value is what constitutes social entrepreneurship37. The first experiences of functioning of social enterprises in EU-15 have been researched in Europe since the 1990s, then, since 2000s, complemented by the development of research in the field of social innovation. The academic inquires began to shed more systemically some new light on the transformative power of social economy entities’ (SEE) institutional settings. Ongoing research has contributed to raising awareness among citizens about the applicability and the importance of such approaches for social well-being. An important pillar on which social enterprise activity base is the organizational and institutional infrastructure. The transformation of the realization of social goals is a manifestation of development, in which the need to achieve a social goal is combined at the same time with the search for new forms of economic organization. The development of organizations of the social economy sector assumes diversification of sources of income, which is the motor of the search for new institutional forms and models of business activity. Social economy entities are non-governmental organizations, rural housewives' clubs, work cooperatives and solidarity economy entities understood as social enterprises, i.e. social economy entities that conduct economic or payable public benefit activity, professionally activate people who are difficult to employ, do not privatize profit or balance surplus and are managed in a participatory way, but also social cooperatives and cooperatives of the disabled and blind, sheltered workshops, reintegration units38, and also in the domain of awareness rising and education. Social enterprise as non-profit or for-profit enterprise has “a specific socio-economic inclusion and social development capacity”39; identified mostly within the non-profit sector40; as “organizations pursuing a social mission through their economic activity”41. Social enterprises (SE) are perceived as hybrid organizations pursuing triple

36 Financial positioning of the enterprises (this focused on profit generating, i.e. standard “bottom line”) complemented by the measures of social and environmental impact.

bottom lines and creating the common good by making profits and adding to social value (example of creating more jobs especially for those with little opportunities) while protecting the natural environment. The emergence of social enterprises was a strategic response to the frailty of government and philanthropic efforts to meet society expectations in delivering the right solutions. This kind of hybrid organizations supports engendering social capital to encourage more advanced social interactions and learning processes in societies of diverse structures. Social enterprises are therefore likely to be active in developing “effective knowledge and learning for (...) fostering a resilient future for them and their future generations.” The processes of investment and surplus reinvestment for the purpose of social, environmental and community good is the core of social enterprise. This hybrid type of organization in its social, economic and environment aspects of impact in local communities offers a range of contributions to advance local economic development processes by “providing goods and services which the market or public sector is unwilling or unable to provide, developing skills, creating employment, creating and managing workspace, and enhancing civil public involvement.” As SEs’ primary focus is to use business to solve social or environmental problems, they apply market-based strategies to achieve social change (social entrepreneurship) including entrepreneurial endeavors to conserve and protect natural environment sustainability.

Very challenging and awaited sector of entrepreneurship is green entrepreneurship where entrepreneurs strive to neutralize environmentally damaging practices and stimulate environmentally friendly activities. These attitudes involve dissuading society from easy going style of life toward a tough one (promoting bicycling instead of driving a car, less profit, and more challenges with the goal of helping the environment at large by promoting more costly,

environment friendly products instead of making easy money burdening natural environment).

Modelling green entrepreneurship embraces identifying objectives and building a movement towards creating a better environment, raising a voice for a green products and practices (conflicting with the existing practices/lifestyle and goods), making people realize their responsibility, launching in the markets and creating new markets of environmentally friendly products and services (green value creation), targeting the environment friendly goods to customers able to pay for the value of the product contributing to cleaner environment (people more environmentally conscious), aiming toward a support from the government and other institutions with the potential to influence policy decision makers⁵¹.

Promoting green entrepreneurship remains vital within a couple of last decades when such example entities as Ashoka Foundation by Bill Drayton, the Skoll Foundation by Jeff Skoll, Schwab Foundation by Hilde and Klaus Schwab organize their efforts to educate, train, raise awareness, support policy making and initiatives of common people.

The fundamentals of social economy entities with their ethos and structures of organization are conductive through their context of day-to-day practice within which citizens are oriented towards social and environmental services and products. SEE are in their primary aim and structure explicitly environmental (because of their social sensitivity, because of the costs of their activities) in that they recycle, promote organic food and so on. And what is even more important here is that their endeavors to achieve social aims are through the most environmentally sustainable manners⁵².

Green entrepreneurship is a new and much sustainable wave in the market involving solutions to local problems embedded in a larger social system and its interdependencies, attuned to triggering the “cascade of mutually-reinforcing changes that create and sustain transformed social arrangements”⁵³. Sustainable social transformation is considered to be catalyzed by social entrepreneurship which is the creator of innovative solutions to social problems, mobilize ideas, increase/expand capacities, (re)allocate resources, make social arrangements for long-term solutions.

Social economy with its ethos and structures of organization hides a potential to orientate citizens towards environmental considerations. At the same time, it is attractive location to develop and articulate environmentally useful engagement – work, production, or ethical consumption. The social economy governance structure provides mechanisms open to variety of stakeholders to participate and stimulate the processes of social and economic governance (increase of environmental and social knowledge, cultivate virtues concentrated on the protection of environment, developing critical skills). The key result of the governance structure is to empower the members of particular social economy entities within its structure, and to empower the beneficiaries of the processes of service delivery in the broader community⁵⁴. The recognition of duties in relation to the environment together with the responsibilities being coherent with those duties seems to be particularly fertile within the

aims, virtues, and properties that the social economy organization emerges from55. The special value is assigned to the engagement of social economy entities in the areas of raising awareness and understanding of environmental context since lack of awareness has been recognized as one of the major obstacles to acting pro-environmentally. There are a number of institutional designs very promising to practice varied forms of participation in this respect. Social entrepreneurship initiatives perceived as catalysts for pro-environmental activities have the potential for capacity-building within which local resource providers make emphasis on scaling up by organizing groups and lead to leverage change and transformational impacts on norms and expectations56. There are some direct environmental outcomes that can be expected such as improved appearance of physical environment, reduction of unrecycled waste products, contribution to local environmental capital, more attractive place to work, renovation of old buildings, redeployment of unused assets, regeneration of physical infrastructure of community, regeneration of physical infrastructure of the region. The indirect environmental outcomes include increased attractiveness of the region, improved environmental context, contribution to sustainability agenda, contribution to regional environmental capital57.

Chapter 4. Green skills as an element of green transformation

The need of development of green skills is related with the challenges the whole world is already facing: devastation of the environment, limitation of natural resources (including energy resources), progressive climate change, and which human have to adapt. As it is mentioned above, especially countries of European Union take action to overtake environmental problems and at the same time shape the framework of socio-economic development with respect for the environment by through systemic changes aimed at creating a low-carbon and circular economy. These activities are associated with structural changes in many sectors of traditional economies, changes in enterprises (production/service processes, offered products, services that are more environmentally friendly), household consumption, activities of local (e.g. waste management system) and central authorities (e.g. development of renewable energy sources). Changes require certain regulations, financial instruments, planning and management, educational activities, etc. In order for the aforementioned changes to take place, skills of a new kind are necessary.

The necessity of the circular economy to emerge increased the pressure to adjust skills of workers demanded by the industries concentrating on more ecologically sustainable technologies. Growing need for the skills to perform ecologically-oriented tasks call for the equipping graduates more with green skills together to technical and soft ones. These new skills can be differentiated depending on the sector, its specifics, they can be low, medium or high skills. Especially desirable are the high ones because of the link to research, innovation aimed at modern energy and resource efficient solutions. However, we must not forget the skills related with jobs necessary for reducing energy consumption and adopting measures to improve energy efficiency (for example demand for insulation workers, electricians and solar photovoltaic installers), recycling, development of clean transport etc. Then, there are needed skills related with design appropriate sectoral policies, implementation of environmental legislation, green tax reform, appropriate financial instruments (green bonds), more environmentally friendly production/service management systems.

The last economic crisis 2008-2010 and implemented programmes related to low-carbon and resource-efficient economy to overcome it have shown a lack of skills needed on the road to green transformation. “The transformation brought about by greening economies affects skill needs in three ways: first, structural changes lead to increased demand for some occupations and skill profiles, called green increased demand occupations (GIDOs), and decreased demand for others. This creates a need for training to enable enterprises and workers to move from sectors and occupations in decline to those that are growing; second, new economic activities generate entirely new occupations that require the provision of appropriate training courses and the adaptation of qualification and training systems to green new and emerging occupations (GNEOs); thirdly, and most pervasively, many existing occupations and industries experience a greening of existing jobs (green expanded skills occupations - GESOs), which leads to significant changes in the tasks and skills required of workers. This source of change in skill requirements is the most common and calls for a major effort to revise existing curricula, qualification standards and training programmes at all levels of education and training. All three sources of change – shifts between industries, development of new
occupations and changing skill profiles within occupations – alter the skill profiles of occupations and thus affect training needs and delivery\(^{58}\) (Scheme 3).

Scheme 3. Reasons for the need for skills due to the transformation towards a green economy

![Scheme 3](image)

“Every job can potentially become greener. Integration of sustainable development and environmental awareness into education and training at all levels, starting from early childhood education, is an important task. It will contribute to changing consumer behaviour and triggering market forces to push the greening agenda ahead(...). Employers investing in new technologies need to be able to find workers with the right skills. Workers and communities that lose jobs in ‘brown’ industries need opportunities for acquiring new skills and employment”\(^{59}\).

The dimensions where new skills will be required are already apparent\(^{60}\) (Scheme 4).

\(^{60}\) Ibidem, p. 96.
The new skills could be divided into three categories:\(^{61}\):

1) **Basic skills** – which are more generic and routine skills found in occupations present in most industries and organisations.

2) **Advanced skills** – which have a higher component of knowledge intensity and can be found in technical occupations and management positions. These skills could also refer to social and communication skills (needed for team work), and specific language and cultural skills (needed in multicultural working environments).

3) **Converging skills** – which require several of the other skills plus skills specific to entrepreneurship, or for adjusting to the green transformation of jobs or indeed new green jobs.

Green skills are perceived to be composed of three dimensions categorized as cognitive, psychomotor, and affective dimensions\(^ {62}\). Promotion of the sustainable development within those three dimension engage knowledge, abilities (skills), and values (attitudes).

The concept of green skills is variously defined. Many of them emphasise only elements related to the economy, although there are also definitions in which the authors note a

combination of different spheres of human functioning, not only in their professional, but also in their social dimension. Scheme 5 presents the selected definitions of green skills.

Scheme 5. Selected definitions of green skills

<table>
<thead>
<tr>
<th>Author</th>
<th>Definition</th>
<th>Differentiator</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Council of Australian Governments – COAG, (2009)</td>
<td>Green skills, also known as skills for sustainability, as the technical skills, knowledge, values and attitudes needed in the workforce to develop and support sustainable social, economic and environmental outcomes in business, industry and the community.</td>
<td>Skills needed to develop and support sustainable social, economic and environmental outcomes.</td>
</tr>
<tr>
<td>OECD/CEDEFOP, (2014)</td>
<td>Green skills can be defined as skills needed by the workforce in all sectors and at all levels, in order to help the adaptation of the products, services and processes to the changes due to climate change and to environmental requirements and regulation</td>
<td>Skills needed by the workforce in all sectors and at all levels.</td>
</tr>
<tr>
<td>Charles Arthur, (2021)</td>
<td>Green skills are the knowledge, abilities, values and attitudes needed to live in, develop and support a sustainable and resource-efficient society</td>
<td>Skills needed to live in, develop and support a sustainable and resource-efficient society.</td>
</tr>
<tr>
<td>Global Green Skills Report, (2022)</td>
<td>Green skills: are those that enable the environmental sustainability of economic activities</td>
<td>For environmental sustainability of economic.</td>
</tr>
</tbody>
</table>

The core of green skills is to build the labor potential to perform tasks that bring in profits without jeopardizing natural ecosystem and to ensure sustainable economic growth and development. That role of green skills taken on by skill training institutions ought to be aligned with the needs of the industrial sectors. Therefore, it is imperative for the skill training institutions to revise curriculum in order to equip graduates with green skills to cater for the demand of manpower market.

The following green skills are enumerated:

1) **Design skill** (building design, machine design, and circuit design. The designer of today should be able to integrate green elements into their design in order to produce an idea that is friendly to the environment\(^{63}\).

2) **Leadership skill** and 3) **Management skill** (to change the organizational structure, function, and operation in order to support green activities, such as lean production or life-cycle management\(^{64}\).

4) **City planning skill** and 5) **Landscaping skill** (many parts of the world are going through urbanization and the existing metropolitans are evolving to become smart cities that aims to generate a more convenient and modern places to live in\(^{65}\). These processes need proper planning and landscaping in order to make the cities livable and sustainable in long run).

6) **Energy skill** (to train workers with energy skills that help reduce the use of non-renewable resource in energy production and consumption, and at the same time replace those non-renewable resources with the ones that are more environmentally friendly and safe to use.)

7) **Financial skill** (to control the expenditure of an organisation in order to balance up the revenue and responsibility for environmental conservation\(^{66}\).

8) **Procurement skill** (to deal many internal departments of an organization as well as external agencies to manage, coordinate and purchase materials. Within green industrial context, procurement skill is very much needed to ensure the materials purchased are environmental friendly in order to minimise the environment impact during their life cycle\(^{67}\).

9) **Waste management skill** (the ability to reduce, reuse, and recycle waste through proper planning, implementation, and coordination of waste management system\(^{68}\). Waste management skill is highly demanded nowadays by the waste management sector which contributes enormously to the sustainability of environment and prevention of pollution).

10) **Communication skill** (needed for verbal and non-verbal communication, but it also includes technological skills for communication which minimise energy consumption and more towards to environmental friendly type of communication\(^{69}\).

The classification indicated above does not exclude a range of other skills needed to shape the green economy. The literature also mentions\(^{70}\):

- adaptability and transferability skills to enable workers to learn and apply the new technologies and processes required to green their jobs;
- systems and risk analysis skills to assess, interpret and understand both the need for change and the measures required;

\(^{69}\) Ibidem, p. 4-5.

entrepreneurial skills to seize the opportunities of low-carbon technologies;
innovation skills to identify opportunities and create new strategies to respond to green challenges;
marketing skills to promote greener products and services;
consulting skills to advise consumers about green solutions and to spread the use of green technologies;
networking, IT and language skills to perform in global markets.

Any economy has to have at its disposal a broad range of knowledge and of technical, managerial and conceptual skills. Some of these skills are not necessarily green per se, but only as green as the context in which they are applied. In this case, it should be emphasised that some of the non-obviousness associated with defining green skills in relation to business activities is also due to the fact that green jobs are not precisely defined. In this respect, as various authors point out, it is therefore possible to think of green skills for jobs. They will therefore include these elements (Scheme 6).

Scheme 6. Way of thinking in terms of green skills for jobs

<table>
<thead>
<tr>
<th>Ethics and sustainability in existing jobs</th>
<th>New jobs in existing industries</th>
<th>New and expanded industries using existing technical skills</th>
<th>New and expanded industries using new professions</th>
</tr>
</thead>
<tbody>
<tr>
<td>different places will rely to varying degrees on new expertise and new technical skills</td>
<td>arise from climate change adaptation initiatives - a new mix of technical skills and ethics (i.e. in mining or construction)</td>
<td>using existing technical skills and ethical understanding and new technical skills (i.e. in renewables)</td>
<td>technical skills plus ethics and sustainability yet to be developed</td>
</tr>
</tbody>
</table>

Based on this type of classification, groups of skills can be created with increasing levels of detail. One such example is the classification proposed by Davide Consoli, Giovanni Marin, David Popp and Francesco Vona (Scheme 7).

73 Ibidem, p. 259.

Scheme 7. Categories of green skills

| Engineering and technical skills - involved in the design, construction and assessment of technology (know-how prominent for eco-building, renewable energy design and energy-saving R&D projects) |
| Science skills - stemming from bodies of knowledge such as physics and biology (demand on these type of skills exists at early stages of the value chains and in the utility sector) |
| Operation Management skills - related to change in organisational structure required to support green activities through life-cycle management, lean production and cooperation with external actors (incl. regulators and customers) |
| Monitoring skills - concerning the observance of technical criteria and legal regulatory requirements (i.e. compliance with environmental laws and standards for firms operating in polluting sectors) |

Importantly, many of these classifications do not point directly to specific practical skill sets, but focus on their relational description in relation to the economy. For example, this is the case with the classification proposed by the LinkedIn group\(^{75}\), where three types of such skills are distinguished:

1) **‘Core’ green skills** - are most directly related to these sustainability-promoting activities (i.e. recycling);
2) **‘Ambivalent’ green skills** - may or may not be used for sustainability (i.e. fleet management);
3) **‘Adjacent’ green skills** - can support acquisition of core and ambivalent green skills (i.e. biology).

The alternative classification could be the following, prepared by M. Pavlova\(^{76}\):

1) **Key/Generic Green Skills** – defined as generic green skills which facilitate the preparation of the future workers to understand issues of green growth and to interpret environmental legislation, in purpose to increase energy and resource efficiency which in turn enables the processes necessary for transitioning to a greener economy,

2) **Topping-Up Skills** – „adding skills for tasks in existing occupations with environmentally friendly practices“77,

3) **Specialised green skills** – which are related with new green occupations.

Additionally, the skills related with green economy could concern a support of resource efficiency, low carbon industry, climate resilience or managing natural assets78.

It is possible to divide the green skills, taking into account the issue of green transition (Scheme 8), some are new related to support the transition, „others are not new: they involve doing established actions with a distinctive green economy awareness and understanding”79. It should be also highlighted that the specifics of green skills will be different in the initial phase of the green transition (when measures, aimed at greening traditional sectors, introduction of green products and services, will be necessary), and different in the era of achieving the goal of a green economy.

Scheme 8. Green skills in transition processes to development of the green economy

Taking into account the above remarks related with definition and classification of the green skills, it should be highlighted that definition of the green skills the following definitional approach is proposed: the green skills are skills needed in all sectors, in all kind of organisation (governmental, non-governmental, business etc.), which from one side should help to understand the issue of green transition and enable it to be carried out (including necessity changes related with law, financial, administrative, management instruments) and on the other enable to develop environmental friendly solution in production, consumption and investment processes, creating and offering environmentally friendly products and services.
Chapter 5. Public institutions for green skills development

In Poland, the Minister of Development is the lead body for co-ordination of the entire package of the closed-circle economy and has a leading role in matters concerning the Communication "Closing the loop" and the Closed-circle Economy Team. Projects at national level, implemented within the framework of the chosen course for CE are:

- Road Map - towards a Closed Circuit Economy;
- Action Plan for Security of Energy Resources in Poland;
- Project R2;
- Environmental Footprint;
- European Innovation Partnership on Raw Materials.

There are public institutions of, inter alia, economic importance, operating under Polish law, which defines the scope of their tasks, supervisory bodies, principles of creating annual action plans and reporting on their implementation. The purpose of these institutions is to implement economic development programmes, supporting innovation and research activities, especially of small and medium-sized enterprises (SMEs), regional development, export growth, human resources development and the use of new technologies in business activities.

In the CE perspective, these institutions are focused on promoting proactive measures for innovation, solutions to protect the environment and improve the quality of life of societies. The key agency at the national level - the Polish Agency for Enterprise Development (PARP) - is involved in the implementation of national and international projects, financed from the structural funds, the state budget and the European Commission's multi-annual programmes. PARP actively participates in the creation and effective implementation of the state policy on entrepreneurship, innovation and adaptability of human resources, striving to become a key institution responsible for creating an environment supporting entrepreneurs. The Agency's activities are implemented with a special focus on the needs of the small and medium-sized enterprise sector.

The specific tasks of the Polish Agency for Enterprise Development in the field of entrepreneurship development include in particular:

- making important administrative and business information available to entrepreneurs,
- subsidizing entrepreneurs' access to services, e.g. training services,
- facilitating small and medium-sized entrepreneurs' access to specialist advisory and training services,
- facilitating small and medium-sized entrepreneurs to obtain certificates required on international markets by financing a part of costs of the certification process,
- providing advisory services to entrepreneurs applying for funds from specific programmes.

PARP and other public institutions, give special importance to network connections in promoting entrepreneurship, which is largely due to the changes that occur in technology
design resulting in the need for frequent modification of production factors and products, and also due to the fact that network connections are an important channel for technology transfer.

Central to the development of small and medium-sized enterprises is the ability to absorb technology and to learn by using the technology. Only when these conditions are met can positive technological changes be expected among domestic enterprises cooperating with other entities. This is what network relations serve, which by facilitating the flow of knowledge, creating conditions for changing the way of thinking and acting, contribute to improving the functioning of entities in network systems.

The institutions in question, their activity, are an important factor in the development of market actors, since the decisions made by entrepreneurs and their activities are carried out in an environment in which these institutions play an important role. Through the institutions in question, the resources (knowledge, information, financial resources), support the production of economic results and determine the incentives and constraints, are therefore translated into the decisions of the economic agents, thus directing and developing their activities.

Furthermore, these institutions must ensure environmental protection by promoting economic activities that will not jeopardise future generations. These institutions seek to encourage a shift from reactive solutions (introducing green innovations to comply with environmental regulations) to proactive attitudes and solutions (exploiting business opportunities in a new context where there is greater concern for environmental protection and the financial benefits associated with it).

To this end, under Polish conditions, we can see the beginnings of a social enterprise culture that facilitates the integration of young people into the social economy and fosters the above objective.

However, it would be worthwhile for these institutions to make greater efforts to encourage the creation of platforms and structures through which social entrepreneurs can share their experiences, facilitating their access to private markets and the exposure of their activities.

For one of the main problems faced by social entrepreneurs (not only on the Polish market) is their isolation, which limits their development horizons. It seems that a network of social entrepreneurs would be a way to overcome this isolation. It could help collect and disseminate best practices, contributing to the development of skills, including green skills. It would provide a forum for debate and ideas. It could provide a kind of labour market where actors can exchange workers or provide joint training.

The key issue is to assure the legal framework for operating social enterprises. Social entrepreneurs can help solve major social problems, but their development will only be

83 Ibidem.
84 Ibidem.
possible in the right environment, which can be created largely by the government and the private sector by undertaking several practical solutions:

- promotion of local, national and international partnerships between actors in the social economy in order to share ideas, contacts and staff,
- developing a contract culture in the public sector,
- promoting partnership agreements between social entrepreneurs and business,
- sponsoring pilot programmes that would help strengthen relations between community organisations and local small business networks,
- social entrepreneurs should be included in the policy towards small and medium-sized enterprises in public policies,
- it is worth identifying a group of social entrepreneurs across the country (e.g. 100) who could
- be a testing ground for new policy ideas such as vocational training, vocational training allowances, job search programmes, health contracts, educational entitlements.

These activities, largely promoting networking and its benefits in the economy, will be an opportunity for market development not only for social enterprises, but also for other entities in the market which will enter into cooperation with them. Public institutions pursuing their strategic objectives should orient their support to a greater extent towards economic networking of entities, including the creation of networks of social enterprises. It is also advisable here to create franchising networks, where certain proven solutions and market skills will be replicated. At the same time, the proper legislation could enable to use such tools as socially responsible public procurement. Ministry of Family and Social Policy published the draft of Assumptions of Resilience and Development for social economy and social entrepreneurship for years 2022-2025 and the green transition is a very important part of the programme.

Chapter 6. The role of education in development of green skills

Social participation and civil reasonability are included in the eight Reference Framework key competence defined by the European Parliament and Council. There is an expectation that students can acquire “citizenship” competences alongside environmental and sustainability awareness and entrepreneurship education involving the focus on analytical, evaluative, and creative abilities also hide the potential to boost the active citizenship for sustainability.

As social entrepreneurship education is about transferring/transmitting not just the abstract knowledge on competence identifying social market opportunities from teacher to students (such as definitions, frameworks, theories) but also the spirit/predisposition/mind-set/passion/skills/readiness to engage in the launching of social enterprises as a result of social learning process, there are a great role of students’ co-creating shared communities of practice identified as being a stimulator of “the propensity of students to launch social enterprise” Learning perceived both as a cognitive and a social process “requires collective and independent actions” which would deliver to learners the understanding and social spirit. Social learning theories disseminated via learning in the communities of practice workplaces have the influence on the understanding of classroom-based management education, and especially on social entrepreneurship education. According to social learning theorists, individuals acquire the knowledge through observing, imitating, and modelling other behaviors. And the foundation of such learning are communities that provide the environment for the observation of behaviors, interactions with those involved. Those learning communities are intended to trigger the social relationships potential

between experts and learners to stimulate innovative formats of participatory and interactive learning activities (teachers more as facilitators participating on the level playing field, being knowledgeable and ignorant in some areas). For students to be part of the learning process it is indispensable to first acquire some knowledge, enact certain practices of the domain of study, then reflect on them and the learning process. Therefore, building a form of learning spaces by teachers to foster conversational learning, development of expertise, practicing and reflecting, feeling, and thinking. The common method/tool is dividing students into small working groups within which they are given tasks to complete, once the task is presented, the teacher steps aside, leaving the students to organize their own community of knowledge as a space for exchanging ideas, asking questions, critiquing, discussing, and developing consensus. Groups can also share internally and explore selected dimensions of the topic/task to then share their expertise with the whole group (students are teachers to themselves; they excel at debating, at resolving disagreements). The student thus becomes an active participant in the educational process (thinking, not merely reproducing).

There is a role of a kind of studio teaching that as a physical space create a room for students to work on projects while being in their phase of conceptualization, experimentation, concrete experience, and reflective observation. The concept of these physical place to incubate ideas is founded on design thinking. Getting engaged in participatory observation of a real-world, reflecting upon the observation by series of discussions, then getting into the interactions with managers of social enterprises and being instructed to getting involved in solving a social problem, identifying social entrepreneurship opportunities for start-ups call for educational set of tools – a form of a laboratory space. Launching social entrepreneurship education schemes/cycles does not remain without impact on the important students’ characteristics as potential social entrepreneurs – empathy (building capacity to imagine the feelings of a marginalized people [transpose students into the feeling and thinking of others], enabling to support in reacting emotionally and compassionately to others feelings), moral obligation (increase the feeling of responsibility to address the problems of socially marginalized individuals and groups in result to sensed and beheld norms and values as moral imperatives), social entrepreneurial self-efficacy (enabling to contribute to societal change, create a social venture often through a small-scale social entrepreneurial behavior), perceived social support (to trigger the formation of behavioral intentions to set up a social venture), intention to start a social enterprise (formation and fostering the plans to be personally involved in launching a social venture).

From the cultural perspective, educational system can promote a culture of social entrepreneurship and makes integration of young people within social economy easier. From a market perspective, platforms and other organizational structures to share social

entrepreneurs experience, knowledge, facilitate the transfer of know-how, increase the visibility of social entrepreneurship initiatives and encourage wider communities to cooperate. From the educational perspective, the education-focused activities can contribute to building business skills107. To better equip communities with tools to tackle the dynamics and complexity of social problems including environmental issues, prioritizing improvement in education and innovation is of key importance108. Shift from paradigm of “service” to a paradigm of participation (to join, to participate in, to bring additional capacity to movement for social justice; to position students more as critical scholars allying with community members as coinvestigators, not just passive volunteers) exposes that students responsibility is not simply “to engage the task at hand, but to comprehend the potential influence of their contribution”; service-learning does not always engage action research (participatory research).

107 OECD, (2016). \textit{Policy brief on scaling the impact of social enterprises}, Luxembourg.

Chapter 7. Frameworks of the concept of SDG Labs – forming a laboratory space

The broader concept of the evolution of green entrepreneurship challenges alongside green transformation with the emphasis on green competences is presented on the Scheme 9.

Scheme 9. Conceptual model of evolving toward sustainable entrepreneurship with the emphasis on citizens’ green competences

Awareness field is seen as transforming into a field of competence and then into active responsible student-citizen position field. The dynamism of the process involves green transformation in terms of evolving green competences together with social participation and civil responsibility. Those three fields focus on three areas of evolution namely ideas and opportunities, resources and competences, and action related areas.

Awareness. Lack of awareness on environmental protection is identified as one of the crucial factors to determine the fight with global climate change. There is scarce knowledge about climate change, about the risk of climate change109. Majority of people do not recognize the causes of pollution (2012, 2015, 2001)110. The largest survey of public opinion on climate

change covering 56% of the world’s population - Peoples’s Climate Vote111 revealed in 2021 widespread recognition that: climate change is “a global emergency”; “the world should do everything necessary and urgently in response” to climate change; out of 18 policies four climate policies were indicated as the most popular to address the climate emergency: 1. Conservation of forests and land (54% public support); 2. Solar, wind and renewable power (53%); 3. Climate-friendly farming techniques (52%); and 4. Investing more in green businesses and jobs (50%). In almost all G20 countries more investment in green businesses and jobs is supported – 73% in the United Kingdom, 68% in Germany, Australia and Canada, 65% in South Africa, 64% in Italy, 59% in Japan, 57% in United States, 56% in France, 51% Argentina, Brazil and Indonesia. “A person’s educational background” was identified as “the most profound socio-demographic driver in the climate emergency and climate action” (highly demanded action for climate change among people with post-secondary education and young people under 18112.

Competence. Shift from paradigm of “service” to a paradigm of participation (to join, to participate in, to bring additional capacity to movement for social justice; to position students more as critical scholars allying with community members as coinvestigators, not just passive volunteers) – students’ responsibility is not simply “to engage the task at hand, but to comprehend the potential influence of their contribution”. Green entrepreneurship trained through creating a context environment for green entrepreneurship and appreciation for the society (incorporate in regular courses, created as separate courses within the existing programs on environment and others, building structured programs aimed at explaining concepts/idea to build required skills of entrepreneurship, and then fundamentally aimed to design self-reliant organizations with the leadership orientation to create new eco-friendly goods, practices); can be studied through case studies, field visits, inquiries, interactions/cooperation with practitioners in the field; **students work with participant organizations** rather than for agencies; service-learning partnerships are formed to allow **students to work for participant organizations** as for example student consultants for a specific purpose or cause.

Active responsible position. An "empathetic model of collective education" is indicated which aims to introduce students to a dimension of educational experience characterized by the diffusion of learning across broad areas of civil society, combinations of formal and informal modes of instruction. The introduction of voluntary participation in local NGOs or community initiatives focused on helping to solve the problems of the local communities in which one lives is shown as examples of teaching within this model. Dispersed and collectivized learning

112 “There is majority support in nearly all G20 countries polled for more investment in green businesses and jobs, led by the United Kingdom (73%), followed by Germany, Australia and Canada (all 68%), South Africa (65%), Italy (64%), Japan (59%), United States (57%), France, (56%), and Argentina, Brazil, and Indonesia (all 51%)”; “The most profound socio-demographic driver of belief in the climate emergency and climate action is a person’s educational background. There were consistently very high levels of demand for climate action among people with post-secondary education in all countries, ranging from LDCs, such as Bhutan and the Democratic Republic of the Congo (both 82%), to wealthy countries like France (87%) and Japan (82%)”; “Young people (under 18) are more likely to believe climate change is a global emergency than other age groups, but a substantial majority of older people still agree with them. Nearly 70% of under-18s said that climate change is a global emergency, compared to 65% of those aged 18-35, 66% aged 36-59 and 58% of those aged over 60”; Ibidem.
is based on the belief that better outcomes can be generated by combining the experiences of people coming together to solve problems that affect them. Distributed and cooperative education allows the focus to shift from the individual to the interdependent group of students (the social experience within the group of students). Knowledge acquisition becomes a social experience, an experience shared with others rather than appropriated or owned. Students learn to share responsibility for the learning of others - inserting themselves into the thinking of others, opening themselves to other perspectives, developing skills to accept criticism, a willingness to help others, a sense of responsibility for the learning community - aimed at fostering "empathic sensitivity" (empathizing thoughts, putting oneself in the shoes of fellow students) - resonating with other students; supporting students to expand their self-awareness to others, to participate more deeply in interdependent communities, and to expand the boundaries of empathy.

In addition, communing with nature is essential to developing critical thinking - observing natural phenomena, understanding the concept of "existence," creating awareness - using the ways students connect phenomena, establishing relationships for themselves that allow them to place themselves in the world.113

Socially Driven Green Labs at the method layer are formed as a laboratory space and incorporate living laboratories methodology and simulation-based learning. At the tool layer, it contains of: 1. Depository of case studies and co-creation activities, resources, and digital package of lecture plans (digital gallery); 2. Teachers training opportunity (Massive Open Online Courses Social Economy for a green transition); 3. Business simulation models; 4. Academic programme incorporating theoretical and practical elements of green skills literacy and environmental sustainability (summer school).

The methodology of living laboratories is understood as an ecosystem that is open, or/and a community designed to integrate stakeholders in the process of innovation and emergence of new ideas. The methodology is based on multiple approaches (SDG Labs: user-center methodology, participatory research, co-design), user engagement (SDG Labs: building a community of users), participation of many stakeholders – HEI students, HEI teachers, SEE, real-life setting, co-creation (SDG Labs: engaging end users in the creation process).

The living labs methodology is based on the three-element framework: exploration, experimentation, evaluation.114 What induced the application of the living laboratory method is its property of a collaborative nature (community of users: HEI students and teachers, as well as SEE with environmental objectives) and potential to endorse a common value of co-creation, rapid prototyping and validation aimed to scale up social innovation and businesses.115

The core objectives expected to be realized by application of living labs methodology is integration of HEI and SEE community with society, the reduction of mismatch of skills with the special emphasis on green skills, the design of multi-disciplinary and challenge-driven educational programme based on the co-creation of green capacities, working out a common “language” among the target groups.

115 Ibidem, p. 13.
The methodology of living labs presented through the phases of defining (state-of-the-art of SEE development in respect to green skills engagement and its possible evolution toward some “future states”), ideating (co-design through knowledge and experience sharing), experimenting (real-life testing of the possible “future states”) and validating (feedback on the ideas and proposed approaches) applied to the issues of renewable energy, sustainable housing, sustainable food system or circular economy can be unfolded as follows:

At the defining stage, an introductory session on sustainability issues is opened to highlight the green business areas of SEE to be explored (renewable energy, sustainable housing, circular economy, sustainable food systems). At the ideating stage, students are moderated to come up with their own socially driven green business solution by using the SDG business canvas. At the experimenting stage, students together with their SEE partners test their green business ideas using SDG business simulation models to better understand the real business decision processes (living laboratory methodology combined with simulation-based application where students test one of the green businesses by taking up a role of a stakeholder – green business model simulation). At the validation stage, all participants identify the areas of further improvement.
Chapter 8. Research results analysis

8.1. Research Methodology

Research problem:
Due to the dominant linear model of production and consumption in the world economy, there is a clear need to develop green skills among market actors, including those in the social economy. This process should take place with the participation of an appropriately constructed and implemented educational system oriented to the circular needs of the economy.

Defining possible green skills deficiencies on the part of students, teachers and social economy actors, is an important step in improving green skills among social economy entities. It is also not without importance to evaluate the educational system in terms of the effectiveness of supporting and developing such skills.

Thus, **research questions** arise:

1. To what extent do social economy entities possess and develop green skills adequately to market needs?
2. Are there any cooperation gaps between social economy entities and education entities in the field?
3. Does the higher education system, provide real support for the acquisition and development of green skills?

Primary research objective:
To conduct a comprehensive and transnational research to verify what green skills social economy actors possess and develop in order to realize an inclusive green transformation.

Specific objectives:

In social enterprises:

− To identify green skills needs and challenges in social enterprises of the project partner countries.
− To conduct a comparative analysis of the current state of art in each partner country.
− To obtain insights and data on factors influencing circular business decisions (these was obtained through in-depth interviews from representatives of green PES).

In the higher education sector - teachers:

− Identify key elements (learning objectives, knowledge, skills and social competencies) of educational programs that support the acquisition of environmentally focused skills by university students in social economy-related fields of study;
− Create proposals to modify educational programs to make universities a force for green transformation;
− To conduct a comparative study in the partner countries.
In the higher education sector - students:

- To check whether the implemented educational programs in higher education (in partner countries) allow students to acquire green skills.

The project adopted the following research hypotheses:

H₁: Social economy entities, despite their significant involvement in green activities, do not demonstrate significant skills and competencies in having and developing green skills relevant to market needs (geared towards revenue generation).

H₂: Deficiencies in green SEE skills are a barrier to entering into cross-sectoral cooperation, acquiring circular business projects that benefit the environment, the economy and the development of the SEE themselves.

H₃: There is a need to modify educational programs, in order to increase support so that higher education centers provide support for skills formation as a driver of green transformation.

Subject scope of the study (research sample):

- SEE, defined as entities (social cooperatives, social enterprises, foundations, associations, etc.) that carry out business activities to achieve social and environmental goals. **SAMPLE SIZE:** 80 PES/20 per country.

- University teachers and students (undergraduate, graduate and postgraduate) in majors/courses related to social economy. **SAMPLE SIZE:** 25 teachers and 50 students/6 teachers and 13 students per country.

Research method:

1. **Analysis of the secondary data** - collection of existing data on green SEE and green skills among students;

2. **Diagnostic survey** using two tools:

 2.1. **Survey questionnaire** - will allow Partners to verify data in the same way as using statistical methods.

 2.2. **In-depth interviews** - will provide a more in-depth look at the issues. Additionally, to/from the in-depth interviews, Partners will collect a set of case studies of SEE that operate in economic sectors with environmental objectives (e.g. rural development, renewable energy, reuse and recycling, sustainable housing and agriculture) and/or incorporate green practices and environmentally friendly approaches into their operations.

End result:

Develop a theoretical model of the SDG Labs educational program describing the key educational approach (Living Labs methodology, simulation-based learning), its key features (co-creation canvas model, SDG simulation business models, summer school) and operational aspects of SDG Labs to be incubated in higher education institutions offering SE education.
8.2. Green skills in Social Economy Enterprises

Within the research 81 Social Economy Enterprises (hereinafter referred to as: SEE or Entities) took part. Table 1. presents the basic statistics described the group.

Table 1. The average number of years of SEE operation

<table>
<thead>
<tr>
<th>Country</th>
<th>Average no. years of operation</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>3.08</td>
<td>(2.47)</td>
</tr>
<tr>
<td>Czechia</td>
<td>12.82</td>
<td>(9.36)</td>
</tr>
<tr>
<td>Greece</td>
<td>8.52</td>
<td>(7.24)</td>
</tr>
<tr>
<td>Poland</td>
<td>7.4</td>
<td>(4.97)</td>
</tr>
<tr>
<td>Total</td>
<td>8.07</td>
<td>(7.31)</td>
</tr>
</tbody>
</table>

Note: In () - standard deviation
Sources: own elaboration

The average number of years of SEE operation amounted more than 8 years, with the shortest activity being 0.5 year and the longest being 32 years. The longest operating SEE were located in the Czech Republic.

Chart 1. Knowledge of the term 'green skills'

Sources: own elaboration

Almost 2/3 of respondents (65.4%) met the term 'green skills'. One in four respondents (23.5%) had never heard of the term and 11.1% were not sure if they knew it (Chart 1).

Most of respondents understand the term ‘green skills’ as ‘knowledge, capacities, values and attitudes needed to develop and support a society that reduces the environmental impact of human activities’ (65.4%) (Table 2). 1/3 of them understands this term as: ‘tackling climate change’. 26 respondents (32.1%) indicated it as: ‘transition to low-carbon economy’. The least (29.6%), indicate that the term is related to: ‘transition to low-carbon economy’, ‘new environmentally friendly economic sectors’ and ‘green products/services’.
Table 2. Identification of term ‘green skills’

<table>
<thead>
<tr>
<th></th>
<th>transition to low-carbon economy</th>
<th>transition to circular economy (closed loop economy)</th>
<th>tackling climate change</th>
<th>new environmentally friendly economic sectors</th>
<th>green products/services</th>
<th>knowledge, capacities, values and attitudes needed to develop and support a society that reduces the environmental impact of human activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Czechia</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Greece</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Poland</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>24</td>
<td>24</td>
<td>53</td>
</tr>
</tbody>
</table>

Sources: own elaboration

Most of the SEE representatives came across the term of ‘green skills’ in social media (32.1%) and in scientific papers (28.3%) (Table 3). Press as a source of information about term ‘green skills’ indicated 22.2% respondents. Using the opportunity to indicate another place, respondents stressed that they had not encountered this term. This may mean that the term is not popular among the surveyed ‘green SEE’ respondents, which may be surprising. Only 13 respondents familiarize with this term via academic conferences and 12 of them via study program. This represents just over 16%.

Table 3. Sources of come across of term ‘green skills’

<table>
<thead>
<tr>
<th></th>
<th>study programme</th>
<th>scientific papers</th>
<th>academic conferences</th>
<th>press</th>
<th>social media</th>
<th>television</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>Czechia</td>
<td>1</td>
<td>2</td>
<td>.</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Greece</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Poland</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>23</td>
<td>13</td>
<td>18</td>
<td>26</td>
<td>4</td>
<td>17</td>
</tr>
</tbody>
</table>

Note: (.) - phenomenon did not occur
Sources: own elaboration

During the survey, respondents were also asked about their knowledge of the term ‘circular economy’. Most of them stated that it is ‘recycling and recovery of materials in production, distribution or consumption processes’ (79%) or ‘natural resources reusing’ (45.7%) (Chart 2). These values are similar to the results of previous studies116.

Chart 2. Identification of term ‘circular economy’

When SEE representatives were asked, to what extent people working/internships in their organisation have the opportunity to acquire green skills, most of them indicated ‘3’ as an assessment. Considering the scale, where 1 meant ‘in none’, and 5 meant ‘fully’, there was a possibility to count basic statistics: mean value and standard deviation. For these questions mean amounted 3.1, which could be interpreted as closer to the statement ‘in fully’. Standard deviation amounted 1.17 which can mean a wide variation of up to one mark in plus or minus. By country, the highest average was recorded in Greece (3.6) and the lowest – in Czechia (2.5) (Chart 3).

Chart 3. Working/internships aimed at developing ‘green skills’ in SEE

Sources: own elaboration
Analysing the degree of acquisition of green skills at the placement site, SEE representatives indicated that the acquisition of ‘ability to adapt to future challenges’ was the highest (average: 3.51) (Chart 4). In this question 8 skills were assessed: 1) engineering and technical skills, 2) scientific literacy understand as broad-based and necessary for innovation, 3) operational management skills, 4) monitoring skills defined as skills required to assess compliance with technical criteria and legal standards relating to environmental protection, 5) design thinking understand as realising projects based on the ability to see the source of problems and real customer/client needs, 6) creativity, 7) ability to adapt to future challenges and 8) resilience awareness of progressing climate changes and the impact of production/service processes on them. When broken down by country, the results are not so clear-cut (Table 6). In Belgium, the highest mean score was achieved by the indication ‘creativity’ (3.89). In Czechia it was: ‘ability to adapt to future challenges’ (3.05) and ‘resilience awareness’ (3.0). In Greece, the highest average was 3.8 for ‘creativity’. In Poland, it was ‘resilience awareness’ (3.86) and ‘ability to adapt to future challenges’ (3.8).

Chart 4. Assessment of acquisition of ‘green skills’ at the placement site

![Chart 4](chart.png)

Sources: own elaboration

Table 4. Functional areas of enterprises related with needed extending of ‘green skills’

<table>
<thead>
<tr>
<th>Source</th>
<th>engineering & technical skills</th>
<th>scientific literacy</th>
<th>operational management</th>
<th>monitoring</th>
<th>design thinking</th>
<th>creativity</th>
<th>ability to adapt to future challenges</th>
<th>resilience awareness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>2.53</td>
<td>2.71</td>
<td>2.79</td>
<td>2.67</td>
<td>3.13</td>
<td>3.89</td>
<td>3.73</td>
<td>3.63</td>
</tr>
<tr>
<td>Czechia</td>
<td>1.2</td>
<td>1.4</td>
<td>1.65</td>
<td>1.65</td>
<td>2.2</td>
<td>2.53</td>
<td>3.05</td>
<td>3.0</td>
</tr>
<tr>
<td>Greece</td>
<td>2.65</td>
<td>3.0</td>
<td>2.85</td>
<td>2.75</td>
<td>3.45</td>
<td>3.8</td>
<td>3.55</td>
<td>3.55</td>
</tr>
<tr>
<td>Poland</td>
<td>1.95</td>
<td>1.89</td>
<td>2.58</td>
<td>2.42</td>
<td>3.15</td>
<td>3.62</td>
<td>3.81</td>
<td>3.86</td>
</tr>
<tr>
<td>Mean</td>
<td>2.05</td>
<td>2.22</td>
<td>2.44</td>
<td>2.35</td>
<td>2.97</td>
<td>3.41</td>
<td>3.51</td>
<td>3.49</td>
</tr>
<tr>
<td>Std. dev.</td>
<td>(1.12)</td>
<td>(1.18)</td>
<td>(1.15)</td>
<td>(1.10)</td>
<td>(1.23)</td>
<td>(1.25)</td>
<td>(1.16)</td>
<td>(1.28)</td>
</tr>
</tbody>
</table>

Note: In () - standard deviation
Sources: own elaboration

When SEE representatives were asked about how beneficial would it be for their organisation to take on employees with established green skills, most of them indicated ‘5’ (mode) as an
assessment. Considering the scale, where 1 meant ‘in none’, and 5 meant ‘fully’, there was a possibility to count basic statistics: mean value and standard deviation. For this question mean amounted 3.86, which could be interpreted as closer to the statement ‘in fully. Standard deviation amounted 1.05 which can mean a wide variation of up to one mark in plus or minus. By country, the highest average was recorded in Poland (4.23) and the lowest – in Czechia (3.5) (Chart 5).

Chart 5. Level of benefits for SEE taking on employees with established green skills

![Chart 5](image)

Sources: own elaboration

When SEE representatives were asked, to what extent they are able to justify the cost-effectiveness of environmental solutions in economic, social and ecological aspects, most of them indicated as an assessment: ‘3’ for economic, ‘4’ for social and ‘5’ for ecological. Considering the scale, where 1 meant ‘in none’, and 5 meant ‘fully’, there was a possibility to count basic statistics: mean value and standard deviation. For this question means amounted: 3.14 for economic, 3.61 for social and 3.7 for ecological. All this means could be interpreted as closer to the statement ‘in fully. By country, the highest average for ‘economic’ aspect was recorded in Poland (3.81) and the lowest – in Czechia (2.45). The highest average for ‘social’ aspect was recorded in Poland (4.24) and the lowest – in Belgium (3.1). The highest average for ‘ecological’ aspect was recorded in Poland (4.19) and the lowest – in Czechia (3.1) (Chart 6 and Table 5).
Chart 6. Ability to justify the cost-effectiveness of environmental solutions in three dimensions

![Chart](chart.png)

Sources: own elaboration

Table 5. Functional areas of enterprises related with needed extending of ‘green skills’

<table>
<thead>
<tr>
<th></th>
<th>economic</th>
<th>social</th>
<th>ecological</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>2.88</td>
<td>3.10</td>
<td>3.40</td>
</tr>
<tr>
<td>Czechia</td>
<td>2.45</td>
<td>3.15</td>
<td>3.10</td>
</tr>
<tr>
<td>Greece</td>
<td>3.35</td>
<td>3.65</td>
<td>3.95</td>
</tr>
<tr>
<td>Poland</td>
<td>3.81</td>
<td>4.24</td>
<td>4.19</td>
</tr>
<tr>
<td>Mean</td>
<td>3.14</td>
<td>3.61</td>
<td>3.71</td>
</tr>
<tr>
<td>Std. dev.</td>
<td>(1.13)</td>
<td>(1.21)</td>
<td>(1.26)</td>
</tr>
</tbody>
</table>

Note: In () - standard deviation

Sources: own elaboration

SEE representatives were asked about their ability to find partners (e.g. business or public institutions) for carrying on the environmental projects. Most of respondents assess it at ‘3’ (mode). The average mean amounted 3.2 for all respondents, but when the results would be analysed by the countries, differences become apparent (Chart 7).
The highest assessment of the declared ability to find the partners was reported in Poland (3.76), the lowest – in Czechia (2.75). In that country, the results were also the most diverse. The most consistent were in Belgium.

The representatives of SEE were asked about the situation, that a good (environmentally and economically justified) project ever not been implemented by their organisation because of a set of causes (Table 6). In this questions respondents can declare ‘Yes’ or ‘No’ for the following reasons:

- lack of economic knowledge of the members of the organisation,
- lack of environmental knowledge among members of the organisation,
- lack of organisational skills,
- lack of persuasive skills of members of the organisation,
- lack of relationship (cooperation) skills of members of the organisation,
- institutional constraints,
- red tape (bureaucracy),
- lack of appropriate legal frameworks.

Table 6 presents the number and percentage of declarations.
Table 6. Decision concerning implementation of a good project due to the reasons

<table>
<thead>
<tr>
<th></th>
<th>Number of observations</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>lack of economic knowledge of the members of the organisation</td>
<td>24</td>
<td>50</td>
</tr>
<tr>
<td>lack of environmental knowledge among members of the organisation</td>
<td>23</td>
<td>51</td>
</tr>
<tr>
<td>lack of organisational skills</td>
<td>13</td>
<td>59</td>
</tr>
<tr>
<td>lack of persuasive skills of members of the organisation</td>
<td>16</td>
<td>56</td>
</tr>
<tr>
<td>lack of relationship (cooperation) skills of members of the organisation</td>
<td>16</td>
<td>56</td>
</tr>
<tr>
<td>institutional constraints</td>
<td>34</td>
<td>36</td>
</tr>
<tr>
<td>red tape (bureaucracy)</td>
<td>44</td>
<td>26</td>
</tr>
<tr>
<td>lack of appropriate legal frameworks</td>
<td>32</td>
<td>36</td>
</tr>
</tbody>
</table>

Sources: own elaboration

SEE representatives mostly declare that lack of any knowledge (economic, environmental) or skills (organisational, persuasive or cooperation) were not a main reason to reject the decision about carrying on the project. What is worth to underline, lack of these soft skills in the lowest level caused the project rejection, compared to lack of knowledge, which was more likely to be a decision to abandon a project. The most important reason causes the decision of non-implementation of a project was ‘bureaucracy’ (so called ‘red tape’). In 54.3% of answers were reported that this was a reason of abandon a project. The second reason of this situation was ‘institutional constraints’ (41.9% of answers ‘yes’). The third one was ‘lack of appropriate legal frameworks’ (39.5%). In summary, external factors were more likely to determine project rejection than internal factors in the SEE.

60 from 81 SEE representatives declared that they were not able to generate revenue through their green economy activities. The rest (21 SEE) declared the various amounts of it. The average of these data is not suitable for calculation, except for Poland, where it amounted for the surveyed SEE 147 thous. PLN (approx. 31 thous. EUR).

Analysing of main driver to work towards a green economy as a way of meeting societal needs and as a source of income for your organisation, SEE representatives reported that the most important factor in both cases is ‘social mission’ (Chart 8). The second one is ‘educational mission’. SEE representatives noticed that opportunity to earn money is important in their work towards a green economy. This may be an indication of their business attitude.
Chart 8. The main drivers to work towards a green economy as a way of meeting societal needs and as a source of income for your organisation

Sources: own elaboration

46 of respondents declared that they did not perceive the gaps in the green skills of trainees or university graduates. The rest of them noticed, that the trainees had mainly a theoretical background or lack of needed knowledge (especially in broader context), lack of skills or awareness.

Communication deficiencies that result from students/students being afraid to ask questions, to be inquisitive, to co-create something together with joy and a sense of mission. Poor engagement and sense of purpose in what is a duty and what is a pleasure at university.

Some of the asked SEE representatives noticed, that trainees even if they think about the green aspects, they cannot behave sustainable. They underline the inability to change the idea into practice, sometimes due to the lack of small local initiatives in the community.

The field of the green economy is relatively modern, with different theoretical approaches, and many different social interventions that can be targeted. Also, the socio-economic system and its connection to the different sectors of production and consumption has a high degree of complexity. These factors can lead to knowledge gaps on some topics, but also to good in-depth knowledge on others.

The last part of survey was related with taking up the circular behaviours by the SEE as organizations. Circular behaviours were described by 16 statements (Chart 9 & Table 7).
Chart 9. Frequency of taking up circular behaviours by the surveyed SEE

- 1. If I design a product of my organisation, I consider its life cycle
- 2. I reduce or manage post-production waste
- 3. We buy recyclable products
- 4. Switch off lights in unused rooms
- 5. Unplug devices when not in use
- 6. We take care of small electronic and technical equipment
- 7. When choosing electronic and technical equipment, we are guided by its energy class
- 8. We use water sparingly
- 9. We use solar panels or photovoltaic collectors
- 10. We use renewable energy resources
- 11. We share equipment with others or use it on a rental basis
- 12. We use the paper several times
- 13. We use second-hand electronic and technical equipment
- 14. We use second-hand furniture, repair or refurbish it
- 15. We repair broken small electronic and technical equipment
- 16. We repair large electronic and technical equipment

Table 7. Number of responses related with circular behaviours taken up by SEE

<table>
<thead>
<tr>
<th>Behaviour</th>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Always</th>
<th>Mean of CB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. If I design a product of my organisation, I consider its life cycle</td>
<td>9</td>
<td>5</td>
<td>20</td>
<td>21</td>
<td>16</td>
<td>3.42</td>
</tr>
<tr>
<td>2. I reduce or manage post-production waste</td>
<td>4</td>
<td>6</td>
<td>17</td>
<td>20</td>
<td>26</td>
<td>3.79</td>
</tr>
<tr>
<td>3. We buy recyclable products</td>
<td>1</td>
<td>9</td>
<td>20</td>
<td>32</td>
<td>11</td>
<td>3.59</td>
</tr>
<tr>
<td>4. Switch off lights in unused rooms</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>22</td>
<td>37</td>
<td>4.23</td>
</tr>
<tr>
<td>5. Unplug devices when not in use</td>
<td>4</td>
<td>3</td>
<td>17</td>
<td>25</td>
<td>24</td>
<td>3.85</td>
</tr>
<tr>
<td>6. We take care of small electronic and technical equipment</td>
<td>3</td>
<td>5</td>
<td>16</td>
<td>29</td>
<td>21</td>
<td>3.81</td>
</tr>
<tr>
<td>7. When choosing electronic and technical equipment we are guided by its energy class</td>
<td>3</td>
<td>4</td>
<td>14</td>
<td>25</td>
<td>25</td>
<td>3.92</td>
</tr>
<tr>
<td>8. We use water sparingly</td>
<td>.</td>
<td>5</td>
<td>7</td>
<td>29</td>
<td>31</td>
<td>4.19</td>
</tr>
<tr>
<td>9. We use solar panels or photovoltaic collectors</td>
<td>40</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>2.1</td>
</tr>
<tr>
<td>10. We use renewable energy resources</td>
<td>35</td>
<td>7</td>
<td>13</td>
<td>8</td>
<td>7</td>
<td>2.21</td>
</tr>
<tr>
<td>11. We share equipment with others or use it on a rental basis</td>
<td>20</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>4</td>
<td>2.56</td>
</tr>
<tr>
<td>12. We use the paper several times</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>29</td>
<td>21</td>
<td>3.82</td>
</tr>
<tr>
<td>13. We use second-hand electronic and technical equipment</td>
<td>18</td>
<td>12</td>
<td>20</td>
<td>15</td>
<td>5</td>
<td>2.67</td>
</tr>
<tr>
<td>14. We use second-hand furniture, repair or refurbish it to make use of</td>
<td>9</td>
<td>7</td>
<td>23</td>
<td>23</td>
<td>7</td>
<td>3.17</td>
</tr>
<tr>
<td>15. We repair broken small electronic and technical equipment</td>
<td>9</td>
<td>8</td>
<td>18</td>
<td>18</td>
<td>15</td>
<td>3.32</td>
</tr>
<tr>
<td>16. We repair large electronic and technical equipment</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>24</td>
<td>14</td>
<td>3.48</td>
</tr>
</tbody>
</table>

Sources: own elaboration

Note: (.) - phenomenon did not occur

Sources: own elaboration
In only two cases did the average reach a value above 4.0:
- 4. Switch off lights in unused rooms (4.23),
- 8. We use water sparingly (4.19).

These behaviours are relatively simple and indeed frequently undertaken. Nor do they present many difficulties.

In 5 cases the mean value from the survey achieved more than 3.5 point:
- 7. When choosing electronic and technical equipment we are guided by its energy class (3.92),
- 5. Unplug devices when not in use (3.85),
- 12. We use the paper several times (3.82),
- 6. We take care of small electronic and technical equipment, thus prolonging its life (3.81),
- 2. I reduce or manage post-production waste (3.79),
- 3. We buy recyclable products (3.59).

In 4 cases, the average did not exceed 3.0. These behaviours required a little more attention, sometimes effort or time.:
- 16. We repair large electronic and technical equipment (3.48),
- 1. If I design a product of my organisation, I consider its life cycle (3.42),
- 15. We repair broken small electronic and technical equipment (3.32),
- 14. We use second-hand furniture, repair or refurbish it to make use of (3.17).

Due to the fact that distribution of variable ‘Mean ofCircularbehaviours’ (Shapiro-Wilk’s W test p=0.0063 for α=0.05) is not normal, authors decided to apply ANOVA Kruskal-Wallis test, which is non-parametric alternative for one-way ANOVA test.

Due to this procedure it was possible to analyse the potential differences between the countries in assessment of circular behaviours. The Kruskal-Wallis ANOVA results allowed to reject of the null hypothesis of no difference\(^\text{117}\) between countries (\(p=0.0228\)). In other words, there are statistically significant differences between countries and gender.

8.3. Green skills among Higher Education teachers

Within the research 33 of respondents from the group of higher education teachers (hereinafter referred to as: teachers) took part. Table 8. presents the basic statistics described the group.

<table>
<thead>
<tr>
<th>Table 8. The metrics information about higher education teachers group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average age</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Belgium</td>
</tr>
<tr>
<td>Czechia</td>
</tr>
<tr>
<td>Greece</td>
</tr>
<tr>
<td>Poland</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Sources: own elaboration

\(^{117}\) Tested hypothesis: \(H_0 – \) no difference between features, \(H_1 – \) existent difference between features.
Men predominated among teachers (17 in refer to 16 women). The average age of all respondents was 44.8 years and the average number of years of occupation was 16.7. Exactly 1/3 of teachers have volunteer experience (by country, most from the Czech Republic).

Chart 10. Knowledge of the term 'green skills'

Sources: own elaboration

Almost half of respondents (48.5%) met the term 'green skills'. Slightly fewer (39.4%) had never heard of the term and 12.1% were not sure if they knew it (Chart 10).

Most of respondents understood the term ‘green skills’ as ‘knowledge, capacities, values and attitudes needed to develop and support a society that reduces the environmental impact of human activities’ (81.1%) (Table 9). 1/3 of them understands this term also as: ‘transition to circular economy (closed loop economy)’ and ‘tackling climate change’. 9 of respondents (27.2%) identifies it as ‘transition to low-carbon economy’. The least (18.1%), indicate that the term is related to ‘new environmentally friendly economic sectors’ and ‘green products/services’.

Table 9. Identification of term ‘green skills’

<table>
<thead>
<tr>
<th></th>
<th>transition to low-carbon economy</th>
<th>transition to circular economy (closed loop economy)</th>
<th>tackling climate change</th>
<th>new environmentally friendly economic sectors</th>
<th>green products/services</th>
<th>knowledge, capacities, values and attitudes needed to develop and support a society that reduces the environmental impact of human activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Czechia</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Greece</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Poland</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>6</td>
<td>6</td>
<td>27</td>
</tr>
</tbody>
</table>

Sources: own elaboration

Most of the teachers came across the term of ‘green skills’ in scientific papers (30.3%) and in social media (27.3%) (Table 10). Academic conferences and press as a source of information about term ‘green skills’ indicated 21.1% of them. Using the opportunity to indicate another
place, respondents stressed that they had not encountered this term. This may mean that the
term is not popular among the surveyed teachers of social economy-related studies, which
may be surprising. Only 4 respondents were familiarized with this term via study program.
This represents just over 12%. From the point of view of the group of respondents, this is quite
important information indicating that the topic of green skills is not addressed in a formal way
in the curricula of courses related to social economy.

Table 10. Sources of come across of term ‘green skills’

<table>
<thead>
<tr>
<th></th>
<th>study programme</th>
<th>scientific papers</th>
<th>academic conferences</th>
<th>press</th>
<th>social media</th>
<th>television</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>Czechia</td>
<td>.</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Greece</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Poland</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>15</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Note: (.) - phenomenon did not occur
Sources: own elaboration

During the survey, respondents were also asked about their knowledge of the term ‘circular
economy’. Most of them stated that it is ‘recycling and recovery of materials in production,
distribution or consumption processes’ (75.8%) or ‘natural resources reusing’ (45.5%) (Chart 11).

Chart 11. Identification of term ‘circular economy’

Sources: own elaboration

Perhaps surprisingly, some respondents indicated economic autarky as an understanding of
the term ‘circular economy’. This result is surprising especially from the point of view of the
target group (teachers) and from the popularity of the term in both science and journalism.

When respondents were asked to what extent are courses aimed at developing green skills
implemented in the fields of study at your university, most of them indicated ‘3’ as an
assessment. Considering the scale, where 1 meant ‘in none’, and 5 meant ‘fully’, there was a
possibility to count basic statistics: mean value and standard deviation. For this question mean
amounted 2.52, which could be interpreted as closer to the statement ‘in none’. Standard
Deviation amounted 1.06 which can mean a wide variation of up to one mark in plus or minus. By country, the highest average was recorded in Belgium (3.22) and the lowest – in Czechia (2.0) (Chart 12).

Chart 12. Implementation of courses aimed at developing ‘green skills’

![Chart showing implementation of courses](image)

Sources: own elaboration

In an open question, teachers indicated mostly sustainable management topics courses (‘Sustainability management’, ‘Sustainable consumption and production’, ‘Sustainable product development’, ‘Sustainable design’) or social entrepreneurship, during which green skills were developed (all indications were 19, some subjects overlapped).

Answering the question to what extent are green skills needed in the given functional areas of enterprises, respondents indicated that they concern mainly in ‘production’ (mean: 4.48) and ‘transport and storage’ (mean: 4.12) (Table 11). These values are quite close to the answer that ‘green skills’ should be developed and used to their full potential in these particular areas of business operations. Respondents rated the importance of green skills slightly above average in terms of ‘sales’, ‘finance’ and ‘advertising’, although in all these aspects they play a significant role. The results obtained may imply traditional, technical thinking about the application of green skills only to the manufacturing sphere and supply logistics.

Table 11. Functional areas of enterprises related with needed extending of ‘green skills’

<table>
<thead>
<tr>
<th>Country</th>
<th>production</th>
<th>transport and storage</th>
<th>sales</th>
<th>finance</th>
<th>advertising</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>4</td>
<td>3.78</td>
<td>3.67</td>
<td>3.78</td>
<td>3.56</td>
</tr>
<tr>
<td>Czechia</td>
<td>4.67</td>
<td>4.34</td>
<td>3.5</td>
<td>3.5</td>
<td>3.17</td>
</tr>
<tr>
<td>Greece</td>
<td>4.9</td>
<td>4.5</td>
<td>3.5</td>
<td>3.7</td>
<td>3.4</td>
</tr>
<tr>
<td>Poland</td>
<td>4.38</td>
<td>3.88</td>
<td>3.88</td>
<td>3.13</td>
<td>3.63</td>
</tr>
<tr>
<td>Mean</td>
<td>4.48</td>
<td>4.12</td>
<td>3.63</td>
<td>3.54</td>
<td>3.45</td>
</tr>
<tr>
<td>Std. dev.</td>
<td>(0.71)</td>
<td>(1.02)</td>
<td>(1.02)</td>
<td>(1.17)</td>
<td>(1.2)</td>
</tr>
</tbody>
</table>

Note: In () - standard deviation

Sources: own elaboration

Respondents rated appropriate study plans as the highest opportunity to acquire ‘green skills’ (Chart 13). This result may indicate the emergence of reflection in respondents, especially when juxtaposed with the responses in the table 3. By country, the indication of a study plan
predominates in the majority of countries, although in Poland the indication of work placements was higher (Table 12).

Chart 13. Opportunity to acquire ‘green skills’ based on the chosen educational elements

![Chart 13](chart13.png)

Sources: own elaboration

Table 12. Opportunity to acquire ‘green skills’ based on the chosen educational elements by countries

<table>
<thead>
<tr>
<th></th>
<th>study plans</th>
<th>learning outcomes</th>
<th>internships/placements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>3.78</td>
<td>3.78</td>
<td>3.56</td>
</tr>
<tr>
<td>Czechia</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Greece</td>
<td>3.9</td>
<td>3.7</td>
<td>3.5</td>
</tr>
<tr>
<td>Poland</td>
<td>3.38</td>
<td>3.25</td>
<td>3.63</td>
</tr>
<tr>
<td>Mean</td>
<td>3.48</td>
<td>3.39</td>
<td>3.36</td>
</tr>
<tr>
<td>Std. dev.</td>
<td>(1.2)</td>
<td>(1.17)</td>
<td>(1.08)</td>
</tr>
</tbody>
</table>

Note: In () - standard deviation

Sources: own elaboration

Respondents indicated that students studying for a degree in social economy most often undertake internships in entities providing services (59%) (Chart 14).
Chart 14. Main area of activity of the entities where students do internships/placements and acquire ‘green skills’

Analyzing the degree of acquisition of green skills at the placement site, teachers indicated that the acquisition of ‘ability to adapt to future challenges’ was the highest (average: 3.45) (Chart 15). In this question 8 skills were assessed: 1) engineering and technical skills, 2) scientific literacy understand as broad-based and necessary for innovation, 3) operational management skills, 4) monitoring skills defined as skills required to assess compliance with technical criteria and legal standards relating to environmental protection, 5) design thinking understand as realising projects based on the ability to see the source of problems and real customer/client needs, 6) creativity, 7) ability to adapt to future challenges and 8) resilience awareness of progressing climate changes and the impact of production/service processes on them. When broken down by country, the results are not so clear-cut (Table 13). In Belgium, the highest mean score was achieved by the indication ‘design thinking’ (3.67). In Czechia it was: ‘creativity’ and ‘ability to adapt to future challenges’ (both at 2.83). It is worth noting that the average scores for all groups were the lowest in the country. This may indicate a low level of recognition that students can develop green skills through work placements. In Greece, the highest average was 3.7 for ‘resilience awareness’. In Poland, it was ‘creativity’ and ‘ability to adapt to future challenges’ (both at 3.75).
Chart 15. Assessment of acquisition of ‘green skills’ at the placement site

![Chart 15: Assessment of acquisition of ‘green skills’ at the placement site](chart.png)

Sources: own elaboration

Table 13. Functional areas of enterprises related with needed extending of ‘green skills’

<table>
<thead>
<tr>
<th></th>
<th>engineering & technical skills</th>
<th>scientific literacy</th>
<th>operational management</th>
<th>monitoring</th>
<th>design thinking</th>
<th>creativity</th>
<th>ability to adapt to future challenges</th>
<th>resilience awareness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>3.5</td>
<td>2.63</td>
<td>3.25</td>
<td>3</td>
<td>3.67</td>
<td>3.13</td>
<td>3.5</td>
<td>3.78</td>
</tr>
<tr>
<td>Czechia</td>
<td>1.6</td>
<td>1.83</td>
<td>2.5</td>
<td>1.5</td>
<td>2.67</td>
<td>2.83</td>
<td>2.83</td>
<td>2.2</td>
</tr>
<tr>
<td>Greece</td>
<td>3.3</td>
<td>3</td>
<td>3.5</td>
<td>3.2</td>
<td>3.5</td>
<td>3.3</td>
<td>3.56</td>
<td>3.7</td>
</tr>
<tr>
<td>Poland</td>
<td>2.29</td>
<td>2.57</td>
<td>2.86</td>
<td>2.86</td>
<td>3.13</td>
<td>3.75</td>
<td>3.75</td>
<td>3.38</td>
</tr>
<tr>
<td>Mean</td>
<td>2.83</td>
<td>2.58</td>
<td>3.1</td>
<td>2.75</td>
<td>3.3</td>
<td>3.28</td>
<td>3.45</td>
<td>3.41</td>
</tr>
<tr>
<td>Std. dev.</td>
<td>(1.12)</td>
<td>(0.96)</td>
<td>(0.79)</td>
<td>(1.14)</td>
<td>(1.02)</td>
<td>(1.05)</td>
<td>(0.81)</td>
<td>(0.91)</td>
</tr>
</tbody>
</table>

Note: In () - standard deviation
Sources: own elaboration

Teachers mostly do not check the effects of their courses in terms of green skills acquired. Only 5 of respondents (15.1%) do that (2 from Belgium and 3 from Poland). They use the credits, exams or other possibility related with the carried out projects. The rest of surveyed teachers do not check the effects.

Answering the question on the weaknesses that were seen in terms of improving green skills in educational programmes, surveyed teachers noted that the most important obstacle is related with not enough case studies (Chart 16). More than 45% of teachers saw this weakness and it might be relevant to consider the tools used by teachers to shape students’ ability to associate economic and environmental issues (Chart 17). Teachers shape the students’ ability mostly due to use ‘case studies’ (57.6%) or ‘presentations’ (45.5%).
Chart 16. Assessment of weaknesses seen in educational programmes in terms of improving ‘green skills’

 sources: own elaboration

Chart 17. Tools for shaping students' ability to associate economic and environmental issues

 sources: own elaboration

Analysing the data on Chart 16 and 17, it is worth noting that quite a high percentage of teachers do not see the connection between environmental and economic issues (almost 40%), while over than 30% claims that in educational programmes there are too much theory. This may indicate a need for enrichment or replacement of content in study programmes with more practical, case-based studies. It is worth noting that teachers also suggest more practice to shape the link between environmental and economic issues (27.2%). In an additional option, teachers identified group work as an element in developing these skills.
When teaching students to argue environmental issues with economic benefits, teachers indicated that they primarily use also ‘case studies’ in form of presentations (51.5%) (Chart 18). As a second tool, teachers indicated ‘evaluation of actors' decisions’ (39.4%).

Chart 18. Tools for shaping students’ ability to argue environmental issues with economic benefits

![Bar chart showing tools used by teachers for shaping students' ability to argue environmental issues with economic benefits.](image)

Sources: own elaboration

Shaping students' cooperative skills, teachers mostly use also ‘case studies’ in form of presentations (42.4%) and ‘practical classes’ (30.3%) (Chart 19). Among the most popular tools there is also ‘evaluation of actors' decisions’ (27.3%) which underlines the practical dimension of used tools.

Chart 19. Tools for shaping students' cooperative skills

![Bar chart showing tools used by teachers for shaping students' cooperative skills.](image)

Sources: own elaboration
The analysed results of this part of the research indicate a quite significant role of case studies and practical classes or evaluation of actors’ decisions as tools not only for presenting issues linking environmental and economic issues, but also for shaping skills of critical evaluation of these links.

The last part of survey was related with taking up the circular behaviours by the teachers. Circular behaviours were described by 26 statements (Chart 20 & Table 14).

Chart 20. Frequency of taking up circular behaviours by the surveyed teachers

<table>
<thead>
<tr>
<th>Statement</th>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I buy recyclable products</td>
<td>23</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2. Switch off lights in unused rooms</td>
<td>26</td>
<td>17</td>
<td>22</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>3. Unplug devices when not in use</td>
<td>15</td>
<td>7</td>
<td>18</td>
<td>29</td>
<td>4</td>
</tr>
<tr>
<td>4. I take care of small electronic and technical equipment</td>
<td>14</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>5. When choosing electronic and technical equipment I use water sparingly</td>
<td>11</td>
<td>9</td>
<td>12</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6. I use solar panels or photovoltaic collectors</td>
<td>12</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>7. I use renewable energy resources</td>
<td>11</td>
<td>9</td>
<td>12</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>8. I use second-hand electronic and technical equipment</td>
<td>9</td>
<td>7</td>
<td>16</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>9. I share equipment with others or use it on a rental basis</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>10. I use the paper several times (e.g. one side printed)</td>
<td>8</td>
<td>11</td>
<td>5</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>11. I use second-hand furniture, repair or refurbish it</td>
<td>6</td>
<td>9</td>
<td>10</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>12. I repair broken small electronic and technical equipment</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>13. I repair large electronic and technical equipment</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>14. I do the laundry when the amount needed to load is more than...</td>
<td>18</td>
<td>13</td>
<td>13</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>15. I dry my laundry in the open air</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>16. I use public transport for trips up to 30 km</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>17. I ride to work by bike</td>
<td>5</td>
<td>7</td>
<td>17</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>18. I buy clothes made from natural raw materials</td>
<td>4</td>
<td>9</td>
<td>13</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>19. I collect parts of other products so that I can make...</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>20. I use used packaging for other purposes</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>21. I repair large electronic and technical equipment</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>22. I use second-hand clothes, repair or refurbish it</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>23. I use a reusable bag when shopping</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>24. I repair broken small electronic and technical equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25. I share clothes I don’t need with others</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26. I buy second-hand clothes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Sources: own elaboration
Table 14. Number of responses related with circular behaviours taken up by the teachers

<table>
<thead>
<tr>
<th></th>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Always</th>
<th>Mean of CB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I buy recyclable products</td>
<td>.</td>
<td>.</td>
<td>8</td>
<td>23</td>
<td>2</td>
<td>3.82</td>
</tr>
<tr>
<td>2. Switch off lights in unused rooms</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>6</td>
<td>26</td>
<td>4.76</td>
</tr>
<tr>
<td>3. Unplug devices when not in use</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>18</td>
<td>7</td>
<td>3.9</td>
</tr>
<tr>
<td>4. I take care of small electronic and technical equipment, thus prolonging its life</td>
<td>.</td>
<td>5</td>
<td>9</td>
<td>15</td>
<td>4</td>
<td>3.55</td>
</tr>
<tr>
<td>5. When choosing electronic and technical equipment I am guided by its energy class</td>
<td>.</td>
<td>2</td>
<td>7</td>
<td>17</td>
<td>7</td>
<td>3.88</td>
</tr>
<tr>
<td>6. I use water sparingly</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>12</td>
<td>9</td>
<td>3.79</td>
</tr>
<tr>
<td>7. I use solar panels or photovoltaic collectors</td>
<td>12</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>2.3</td>
</tr>
<tr>
<td>8. I use renewable energy resources</td>
<td>6</td>
<td>9</td>
<td>11</td>
<td>5</td>
<td>2</td>
<td>2.64</td>
</tr>
<tr>
<td>9. I share equipment with others or use it on a rental basis (I do not buy)</td>
<td>11</td>
<td>9</td>
<td>5</td>
<td>8</td>
<td>.</td>
<td>2.3</td>
</tr>
<tr>
<td>10. I use the paper several times (e.g. one side printed on, I use it for the dirty copy)</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>11</td>
<td>3.7</td>
</tr>
<tr>
<td>11. I use second-hand electronic and technical equipment (e.g. leased laptop)</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>2.64</td>
</tr>
<tr>
<td>12. I use second-hand furniture, repair or refurbish it to make use of</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>2.64</td>
</tr>
<tr>
<td>13. I repair broken small electronic and technical equipment (e.g. telephone, electric kettle)</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>2.79</td>
</tr>
<tr>
<td>14. I repair large electronic and technical equipment (e.g. computers)</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>2.94</td>
</tr>
<tr>
<td>15. I buy an adequate number of food items in relation to what I can eat</td>
<td>.</td>
<td>.</td>
<td>6</td>
<td>20</td>
<td>7</td>
<td>4.03</td>
</tr>
<tr>
<td>16. I do the laundry when the amount needed to load the entire washing machine has been collected</td>
<td>.</td>
<td>2</td>
<td>2</td>
<td>13</td>
<td>16</td>
<td>4.3</td>
</tr>
<tr>
<td>17. I dry my laundry in the open air</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>3.33</td>
</tr>
<tr>
<td>18. I use public transport for trips up to 30 km</td>
<td>4</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>3.06</td>
</tr>
<tr>
<td>19. I ride to work by bike</td>
<td>13</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2.34</td>
</tr>
<tr>
<td>20. I buy clothes made from natural raw materials (cotton, silk, linen)</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>4</td>
<td>3.36</td>
</tr>
<tr>
<td>21. I collect parts of other products so that I can make the product I need from them</td>
<td>13</td>
<td>9</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>2.12</td>
</tr>
<tr>
<td>22. I use used plastic packaging for other purposes</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>17</td>
<td>3</td>
<td>3.36</td>
</tr>
<tr>
<td>23. Before throwing things away, I disassemble components that I estimate may be useful</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>3</td>
<td>2.88</td>
</tr>
<tr>
<td>24. I use a reusable bag when shopping</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>16</td>
<td>4.09</td>
</tr>
<tr>
<td>25. I share clothes I don’t need with others</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>9</td>
<td>3.76</td>
</tr>
<tr>
<td>26. I buy second-hand clothes</td>
<td>12</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>2.41</td>
</tr>
</tbody>
</table>

Note: (.) - phenomenon did not occur
Sources: own elaboration

In only four cases did the average reach a value above 4.0:
- 2. Switch off lights in unused rooms (4.76),
- 16. I do the laundry when the amount needed to load the entire washing machine has been collected (4.30),
- 24. I use a reusable bag when shopping (4.09),
- 15. I buy an adequate number of food items in relation to what I can eat (4.03).

These behaviours are relatively simple and indeed frequently undertaken. Nor do they present many difficulties.

In 7 cases the mean value from the survey achieved more than 3.5 point:
- 3. Unplug devices when not in use (3.90),
5. When choosing electronic and technical equipment I am guided by its energy class (3.88)

1. I buy recyclable products (3.82),

6. I use water sparingly (3.79),

25. I share clothes I don’t need with others (3.76),

10. I use the paper several times (e.g. one side printed on, I use it for the dirty copy) (3.7)

4. I take care of small electronic and technical equipment, thus prolonging its life (3.55).

In 11 cases, the average did not exceed 3.0. These behaviours required a little more attention, sometimes effort or time.:

14. I repair large electronic and technical equipment (e.g. computers) (2.94),

23. Before throwing things away, I disassemble components that I estimate may be useful (2.88),

13. I repair broken small electronic and technical equipment (e.g. telephone, electric kettle) (2.79),

8. I use renewable energy resources (2.64),

11. I use second-hand electronic and technical equipment (e.g. leased laptop) (2.64),

12. I use second-hand furniture, repair or refurbish it to make use of (2.64),

26. I buy second-hand clothes (2.41),

19. I ride to work by bike (2.34),

7. I use solar panels or photovoltaic collectors (2.30),

9. I share equipment with others or use it on a rental basis (I do not buy) (2.3),

21. I collect parts of other products so that I can make the product I need from them (2.12).

Due to the fact of normality of distribution of variable ‘Mean of Circular behaviours’ (Shapiro-Wilk’s W test \(p=0.933 \) for \(\alpha=0.05 \)) and homogeneity of variance (Levene’s test \(p=0.063 \)) it was possible to analyse the potential differences between the countries in assessment of circular behaviours. The ANOVA test results did not mandate the rejection of the null hypothesis of no difference\(^{118} \) (\(p=0.257 \)). In other words, the results obtained do not differ between countries. Interestingly, the results do not differ according to the gender of the respondents either (\(p=0.465 \)).

8.4. Green skills among Higher Education students

Within the research of 141 respondents from the group of higher education students (hereinafter referred to as: students) were take part. Table 15 presents the basic statistics described the group.

\(^{118}\) Tested hypothesis: \(H_0 \) – no difference between features, \(H_1 \) – existent difference between features.
Table 15. The metrics information about higher education students group

<table>
<thead>
<tr>
<th></th>
<th>Average age</th>
<th>Gender</th>
<th>Degree of the study</th>
<th>Having work experience</th>
<th>Having volunteer experience</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td>Male</td>
<td>Refusal to reply</td>
<td>BSc</td>
</tr>
<tr>
<td>Belgium</td>
<td>26.42</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Czechia</td>
<td>21.72</td>
<td>18</td>
<td>7</td>
<td>.</td>
<td>18</td>
</tr>
<tr>
<td>Greece</td>
<td>26.69</td>
<td>13</td>
<td>18</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Poland</td>
<td>22.08</td>
<td>54</td>
<td>16</td>
<td>1</td>
<td>52</td>
</tr>
<tr>
<td>Total</td>
<td>23.44</td>
<td>90</td>
<td>45</td>
<td>6</td>
<td>70</td>
</tr>
</tbody>
</table>

Sources: own elaboration

Women predominated among students (90 in refer to 45 men; 6 persons refused answers). The average age of all respondents was 23.4 years. Students attended mostly 1st graduate level of the study (Bachelor’s). Less than a half of them had work experience (40.4%) and one in four students (26.9%) had volunteer experience (by country, most from the Greece).

Chart 21. Knowledge of the term 'green skills'

Sources: own elaboration

Less than a half of respondents (40%) didn’t meet the term 'green skills'. Slightly fewer (34%) had heard of the term and 26% were not sure if they knew it (Chart 21).

Most of respondents understood the term ‘green skills’ as ‘knowledge, capacities, values and attitudes needed to develop and support a society that reduces the environmental impact of human activities’ (69.5%) (Table 16). Over than 36% understood this term as ‘tackling climate change’ and almost 1/3 of them (31.2%) also as: ‘new environmentally friendly economic sectors’ and ‘green products/services’. 38 of respondents (26.9%) identified it as ‘transition to low-carbon economy’. The least (17%), indicated that the term is related to ‘transition to circular economy (closed loop economy). These results are different than in HE teacher group.
Table 16. Identification of term ‘green skills’

<table>
<thead>
<tr>
<th></th>
<th>transition to low-carbon economy</th>
<th>transition to circular economy (closed loop economy)</th>
<th>tackling climate change</th>
<th>new environmentally friendly economic sectors</th>
<th>green products/services</th>
<th>knowledge, capacities, values and attitudes needed to develop and support a society that reduces the environmental impact of human activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Czechia</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>Greece</td>
<td>8</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>Poland</td>
<td>23</td>
<td>11</td>
<td>28</td>
<td>28</td>
<td>24</td>
<td>55</td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td>24</td>
<td>51</td>
<td>44</td>
<td>44</td>
<td>98</td>
</tr>
</tbody>
</table>

Sources: own elaboration

Most of the students came across the term of ‘green skills’ in study programme (41.1%) and in social media (32.6%) (Table 17). Scientific papers as a source of information about term ‘green skills’ indicated 16.3% of them. Press and television indicated less than one in ten students (7.8% and 7.1%). Using the opportunity to indicate another place, respondents stressed that they had not encountered this term (12 responses) or met it right in the research in work or in volunteer place. This may mean that the term is not so popular among the surveyed students of social economy-related studies, which may be surprising (similarly as in HE teacher group). Better information is that, the students were mostly familiarized with the term via study programme. From the point of view of the group of respondents, this is quite important information indicating that the topic of green skills should be presented via study programme in extended version, and the curricula of courses related to social economy could be the best place to present this idea.

Table 17. Sources of come across of term ‘green skills’

<table>
<thead>
<tr>
<th></th>
<th>study programme</th>
<th>scientific papers</th>
<th>academic conferences</th>
<th>press</th>
<th>social media</th>
<th>television</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Czechia</td>
<td>14</td>
<td>3</td>
<td>.</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Greece</td>
<td>2</td>
<td>7</td>
<td>.</td>
<td>13</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Poland</td>
<td>40</td>
<td>11</td>
<td>5</td>
<td>26</td>
<td>5</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>23</td>
<td>7</td>
<td>46</td>
<td>10</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Note: () - phenomenon did not occur
Sources: own elaboration

During the survey, respondents were also asked about their knowledge of the term ‘circular economy’ (Chart 22). Most of them stated that it is ‘recycling and recovery of materials in production, distribution or consumption processes’ (71.6%) (similarly, in the HE teachers group it amounted 75.8%) or ‘natural resources reusing’ (59.6%). What could be surprising in the group of HE teachers it amounted only 45.5%.
Chart 22. Identification of term ‘circular economy’

Source: own elaboration

When respondents were asked to what extent are courses aimed at developing green skills implemented in the fields of study at your university, most of them indicated ‘3’ as an assessment. Considering the scale, where 1 meant ‘in none’, and 5 meant ‘fully’, there was a possibility to count basic statistics: mean value and standard deviation. For this question mean amounted 3.10, which could be interpreted as closer to the statement ‘fully’. Standard deviation amounted 1.01 which can mean a wide variation of up to one mark in plus or minus. By country, the highest average was recorded in Belgium (3.87) and the lowest – in Greece (2.32) (Chart 23).

Chart 23. Implementation of courses aimed at developing ‘green skills’

Source: own elaboration
In an open question, students indicated mostly sustainable management topics courses (‘Sustainability management’, ‘Sustainable consumption and production’, ‘CSR’) or social entrepreneurship, during which green skills were developed (all indications were 35, some subjects overlapped).

Answering the question to what extent are green skills needed in the given functional areas of enterprises, respondents indicated that they concern mainly in ‘production’ (mean: 4.34) and ‘transport and storage’ (mean: 4.08) (Table 18). Respondents rated the importance of green skills slightly above average in terms of ‘advertising’, ‘sales’ and ‘finance’, although in all these aspects they play a significant role. The results obtained may imply traditional, technical thinking about the application of green skills only to the manufacturing sphere and supply logistics (similarly as in HE teachers group).

Table 18. Functional areas of enterprises related with needed extending of ‘green skills’

<table>
<thead>
<tr>
<th></th>
<th>production</th>
<th>transport and storage</th>
<th>sales</th>
<th>finance</th>
<th>advertising</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>3.55</td>
<td>2.91</td>
<td>3.10</td>
<td>3.38</td>
<td>3.10</td>
</tr>
<tr>
<td>Czechia</td>
<td>4.32</td>
<td>4.20</td>
<td>3.16</td>
<td>2.56</td>
<td>3.24</td>
</tr>
<tr>
<td>Greece</td>
<td>4.65</td>
<td>4.35</td>
<td>3.48</td>
<td>3.39</td>
<td>3.68</td>
</tr>
<tr>
<td>Poland</td>
<td>4.34</td>
<td>4.11</td>
<td>3.61</td>
<td>3.30</td>
<td>3.64</td>
</tr>
<tr>
<td>Mean</td>
<td>4.34</td>
<td>4.09</td>
<td>3.46</td>
<td>3.19</td>
<td>3.53</td>
</tr>
<tr>
<td>Std. dev.</td>
<td>(0.89)</td>
<td>(0.96)</td>
<td>(1.05)</td>
<td>(1.07)</td>
<td>(1.11)</td>
</tr>
</tbody>
</table>

Note: In () - standard deviation
Sources: own elaboration

Respondents rated appropriate learning outcomes and study plans as the highest opportunity to acquire ‘green skills’ (Chart 24). This result may indicate the emergence of reflection in respondents, especially when juxtaposed with the responses in the table 10. By country, the indication of a study plan predominates in the majority of countries, although in Czech Republic the indication of learning outcomes was higher (Table 19).

Chart 24. Opportunity to acquire ‘green skills’ based on the chosen educational elements

Sources: own elaboration
Table 19. Opportunity to acquire 'green skills' based on the chosen educational elements by countries

<table>
<thead>
<tr>
<th></th>
<th>study plans</th>
<th>learning outcomes</th>
<th>internships/placements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>2.73</td>
<td>2.88</td>
<td>2.67</td>
</tr>
<tr>
<td>Czechia</td>
<td>3.36</td>
<td>3.40</td>
<td>3.29</td>
</tr>
<tr>
<td>Greece</td>
<td>3.20</td>
<td>3.10</td>
<td>3.20</td>
</tr>
<tr>
<td>Poland</td>
<td>3.38</td>
<td>3.37</td>
<td>2.99</td>
</tr>
<tr>
<td>Mean</td>
<td>3.28</td>
<td>3.28</td>
<td>3.06</td>
</tr>
<tr>
<td>Std. dev.</td>
<td>(0.88)</td>
<td>(0.82)</td>
<td>(1.17)</td>
</tr>
</tbody>
</table>

Note: In () – standard deviation
Sources: own elaboration

Students studying for a degree in social economy indicated that they most often undertake internships in entities providing production (39.7%) (Chart 25). This is a different answer to that given by the HE teachers (in that grout the entities providing services were noticed as the place of internships).

Chart 25. Main area of activity of the entities where students do internships/placements and acquire ‘green skills’

Analysing the degree of acquisition of green skills at the placement site, students indicated that the acquisition of ‘resilience awareness of progressing climate changes and the impact of production/service processes on them’ was the highest (average: 3.67) (Chart 26). In this question 8 skills were assessed: 1) engineering and technical skills, 2) scientific literacy understand as broad-based and necessary for innovation, 3) operational management skills, 4) monitoring skills defined as skills required to assess compliance with technical criteria and legal standards relating to environmental protection, 5) design thinking understand as realising projects based on the ability to see the source of problems and real customer/client needs, 6) creativity, 7) ability to adapt to future challenges and 8) resilience awareness of progressing climate changes and the impact of production/service processes on them. When broken down by country, the results are similar (Table 20). In Belgium, the highest mean score was achieved by the indication ‘creativity’ and ‘ability to adapt to future challenges’ (both at 3.89). In Czechia, Greece and in Poland it was ‘resilience awareness’ (3.5, 3.81 and 3.7).
Chart 26. Assessment of acquisition of ‘green skills’ at the placement site

Sources: own elaboration

Table 20. Functional areas of enterprises related with needed extending of ‘green skills’

<table>
<thead>
<tr>
<th></th>
<th>engineering & technical skills</th>
<th>scientific literacy</th>
<th>operational management</th>
<th>monitoring</th>
<th>design thinking</th>
<th>creativity</th>
<th>ability to adapt to future challenges</th>
<th>resilience awareness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>2.89</td>
<td>3.56</td>
<td>3.18</td>
<td>3.25</td>
<td>3.78</td>
<td>3.89</td>
<td>3.89</td>
<td>3.44</td>
</tr>
<tr>
<td>Czechia</td>
<td>2.38</td>
<td>2.65</td>
<td>2.75</td>
<td>2.90</td>
<td>3.20</td>
<td>2.63</td>
<td>3.25</td>
<td>3.50</td>
</tr>
<tr>
<td>Greece</td>
<td>3.26</td>
<td>2.96</td>
<td>3.19</td>
<td>3.74</td>
<td>3.46</td>
<td>3.35</td>
<td>3.65</td>
<td>3.81</td>
</tr>
<tr>
<td>Poland</td>
<td>2.30</td>
<td>2.78</td>
<td>2.90</td>
<td>2.94</td>
<td>3.19</td>
<td>3.54</td>
<td>3.58</td>
<td>3.70</td>
</tr>
<tr>
<td>Mean</td>
<td>2.56</td>
<td>2.85</td>
<td>3.96</td>
<td>3.13</td>
<td>3.29</td>
<td>3.38</td>
<td>3.57</td>
<td>3.67</td>
</tr>
</tbody>
</table>

Note: In () - standard deviation
Sources: own elaboration

Answering the question on weaknesses perceived in terms of improving green skills in educational programmes, surveyed students noted that the most important obstacle was related with too much theory (Chart 27). Almost a half students saw this weakness (49.6%). Students complained also of not enough number of case studies (34.04%).
Chart 27. Assessment of weaknesses seen in educational programmes in terms of improving ‘green skills’

Students indicated the subjects of study that most enhanced their environmental skills. These were mostly linked to similar subjects mentioned earlier (when indicating the opportunities to acquire and develop environmental skills). These subjects raised, among other things: environmental awareness and impact and behaviour change, awareness of innovation and good practice in applying theory to practical examples. The courses influenced the change of personal improvements in sustainable living, showed how to turn ecology into something fashionable and elegant, definitely influenced the implementation of environmental actions in students' daily lives. They also raised students’ level of knowledge on the subject, made them aware of the scale of the problem and increased their readiness to take appropriate action.

For the question ‘What subjects still need to be introduced into the study plan to improve green skills?’, students claimed that there should be more practical courses based on real cases. They stated only in a few examples the exact names of the course (ex. ‘Applying ecology in everyday life’, ‘Environmental protection’, or ‘How to recycle properly’). The most important indication in this case was that the proposed subjects should be based on the analysis of real cases (e.g. from Scandinavian or Anglo-Saxon countries).

The last part of survey was related with taking up the circular behaviours by the teachers. Circular behaviours were described by 26 statements (Chart 28 & Table 21).
Chart 28. Frequency of taking up circular behaviours by the surveyed teachers

1. I buy recyclable products
 - Never: 1
 - Rarely: 12
 - Sometimes: 57
 - Often: 56
 - Always: 9

2. Switch off lights in unused rooms
 - Never: 8
 - Rarely: 8
 - Sometimes: 33
 - Often: 90

3. Unplug devices when not in use
 - Never: 1
 - Rarely: 20
 - Sometimes: 29
 - Often: 45
 - Always: 40

4. I take care of small electronic and technical equipment
 - Never: 1
 - Rarely: 11
 - Sometimes: 26
 - Often: 55
 - Always: 42

5. When choosing electronic and technical equipment I
 - Never: 9
 - Rarely: 31
 - Sometimes: 36
 - Often: 33
 - Always: 23

6. I use water sparingly
 - Never: 3
 - Rarely: 11
 - Sometimes: 32
 - Often: 49
 - Always: 40

7. I use solar panels or photovoltaic collectors
 - Never: 62
 - Rarely: 19
 - Sometimes: 14
 - Often: 13
 - Always: 25

8. I use renewable energy resources
 - Never: 33
 - Rarely: 31
 - Sometimes: 36
 - Often: 24
 - Always: 9

9. I share equipment with others or use it on a rental
 - Never: 36
 - Rarely: 33
 - Sometimes: 33
 - Often: 29
 - Always: 4

10. I use the paper several times
 - Never: 3
 - Rarely: 16
 - Sometimes: 28
 - Often: 58
 - Always: 29

11. I use second-hand electronic and technical equipment
 - Never: 56
 - Rarely: 29
 - Sometimes: 20
 - Often: 24
 - Always: 5

12. I use second-hand furniture, repair or refurbish it...
 - Never: 39
 - Rarely: 25
 - Sometimes: 34
 - Often: 30
 - Always: 5

13. I repair broken small electronic and technical equipment
 - Never: 24
 - Rarely: 27
 - Sometimes: 46
 - Often: 29
 - Always: 8

14. I repair large electronic and technical equipment
 - Never: 21
 - Rarely: 21
 - Sometimes: 24
 - Often: 44
 - Always: 24

15. I buy an adequate number of food items in relation...
 - Never: 6
 - Rarely: 28
 - Sometimes: 54
 - Often: 45

16. I do the laundry when the amount needed to load...
 - Never: 4
 - Rarely: 14
 - Sometimes: 38
 - Often: 80

17. I dry my laundry in the open air
 - Never: 8
 - Rarely: 17
 - Sometimes: 22
 - Often: 29
 - Always: 57

18. I use public transport for trips up to 30 km
 - Never: 8
 - Rarely: 17
 - Sometimes: 27
 - Often: 44
 - Always: 36

19. I ride to work by bike
 - Never: 19
 - Rarely: 80
 - Sometimes: 16
 - Often: 18
 - Always: 13

20. I buy clothes made from natural raw materials
 - Never: 6
 - Rarely: 17
 - Sometimes: 63
 - Often: 38
 - Always: 6

21. I collect parts of other products so that I can make...
 - Never: 14
 - Rarely: 46
 - Sometimes: 37
 - Often: 35
 - Always: 22

22. I use used plastic packaging for other purposes
 - Never: 13
 - Rarely: 21
 - Sometimes: 36
 - Often: 41
 - Always: 21

23. Before throwing things away, I disassemble...
 - Never: 17
 - Rarely: 36
 - Sometimes: 38
 - Often: 27
 - Always: 15

24. I use a reusable bag when shopping
 - Never: 3
 - Rarely: 18
 - Sometimes: 42
 - Often: 62

25. I share clothes I don't need with others
 - Never: 6
 - Rarely: 12
 - Sometimes: 25
 - Often: 34
 - Always: 55

26. I buy second-hand clothes
 - Never: 29
 - Rarely: 29
 - Sometimes: 27
 - Often: 32
 - Always: 13

Sources: own elaboration
Table 21. Number of responses related with circular behaviours taken up by the students

<table>
<thead>
<tr>
<th>Behaviour</th>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Always</th>
<th>Mean of CB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I buy recyclable products</td>
<td>1</td>
<td>12</td>
<td>57</td>
<td>56</td>
<td>9</td>
<td>3.44</td>
</tr>
<tr>
<td>2. Switch off lights in unused rooms</td>
<td>.</td>
<td>3</td>
<td>8</td>
<td>33</td>
<td>90</td>
<td>4.57</td>
</tr>
<tr>
<td>3. Unplug devices when not in use</td>
<td>1</td>
<td>20</td>
<td>29</td>
<td>45</td>
<td>40</td>
<td>3.76</td>
</tr>
<tr>
<td>4. I take care of small electronic and technical equipment, thus prolonging its life</td>
<td>1</td>
<td>11</td>
<td>26</td>
<td>55</td>
<td>42</td>
<td>3.93</td>
</tr>
<tr>
<td>5. When choosing electronic and technical equipment I am guided by its energy class</td>
<td>9</td>
<td>31</td>
<td>36</td>
<td>33</td>
<td>23</td>
<td>3.23</td>
</tr>
<tr>
<td>6. I use water sparingly</td>
<td>3</td>
<td>11</td>
<td>32</td>
<td>49</td>
<td>40</td>
<td>3.83</td>
</tr>
<tr>
<td>7. I use solar panels or photovoltaic collectors</td>
<td>62</td>
<td>19</td>
<td>14</td>
<td>13</td>
<td>25</td>
<td>2.4</td>
</tr>
<tr>
<td>8. I use renewable energy resources</td>
<td>33</td>
<td>31</td>
<td>36</td>
<td>24</td>
<td>9</td>
<td>2.59</td>
</tr>
<tr>
<td>9. I share equipment with others or use it on a rental basis (I do not buy)</td>
<td>36</td>
<td>33</td>
<td>33</td>
<td>29</td>
<td>4</td>
<td>2.5</td>
</tr>
<tr>
<td>10. I use the paper several times (e.g. one side printed on, I use it for the dirty copy)</td>
<td>3</td>
<td>16</td>
<td>28</td>
<td>58</td>
<td>29</td>
<td>3.7</td>
</tr>
<tr>
<td>11. I use second-hand electronic and technical equipment (e.g. leased laptop)</td>
<td>56</td>
<td>29</td>
<td>20</td>
<td>24</td>
<td>5</td>
<td>2.2</td>
</tr>
<tr>
<td>12. I use second-hand furniture, repair or refurbish it to make use of</td>
<td>39</td>
<td>25</td>
<td>34</td>
<td>30</td>
<td>5</td>
<td>2.53</td>
</tr>
<tr>
<td>13. I repair broken small electronic and technical equipment (e.g. telephone, electric kettle)</td>
<td>24</td>
<td>27</td>
<td>46</td>
<td>29</td>
<td>8</td>
<td>2.78</td>
</tr>
<tr>
<td>14. I repair large electronic and technical equipment (e.g. computers)</td>
<td>21</td>
<td>21</td>
<td>24</td>
<td>44</td>
<td>24</td>
<td>3.22</td>
</tr>
<tr>
<td>15. I buy an adequate number of food items in relation to what I can eat</td>
<td>.</td>
<td>6</td>
<td>28</td>
<td>54</td>
<td>45</td>
<td>4.04</td>
</tr>
<tr>
<td>16. I do the laundry when the amount needed to load the entire washing machine has been collected</td>
<td>.</td>
<td>1</td>
<td>14</td>
<td>38</td>
<td>80</td>
<td>4.48</td>
</tr>
<tr>
<td>17. I dry my laundry in the open air</td>
<td>8</td>
<td>17</td>
<td>22</td>
<td>29</td>
<td>57</td>
<td>3.83</td>
</tr>
<tr>
<td>18. I use public transport for trips up to 30 km</td>
<td>8</td>
<td>17</td>
<td>27</td>
<td>44</td>
<td>36</td>
<td>3.63</td>
</tr>
<tr>
<td>19. I ride to work by bike</td>
<td>80</td>
<td>16</td>
<td>18</td>
<td>13</td>
<td>6</td>
<td>1.86</td>
</tr>
<tr>
<td>20. I buy clothes made from natural raw materials (cotton, silk, linen)</td>
<td>6</td>
<td>17</td>
<td>63</td>
<td>38</td>
<td>6</td>
<td>3.16</td>
</tr>
<tr>
<td>21. I collect parts of other products so that I can make the product I need from them</td>
<td>46</td>
<td>37</td>
<td>35</td>
<td>13</td>
<td>2</td>
<td>2.16</td>
</tr>
<tr>
<td>22. I use used plastic packaging for other purposes</td>
<td>13</td>
<td>21</td>
<td>36</td>
<td>41</td>
<td>21</td>
<td>3.27</td>
</tr>
<tr>
<td>23. Before throwing things away, I disassemble components that I estimate may be useful</td>
<td>17</td>
<td>36</td>
<td>38</td>
<td>27</td>
<td>15</td>
<td>2.9</td>
</tr>
<tr>
<td>24. I use a reusable bag when shopping</td>
<td>3</td>
<td>5</td>
<td>18</td>
<td>42</td>
<td>62</td>
<td>4.19</td>
</tr>
<tr>
<td>25. I share clothes I don’t need with others</td>
<td>6</td>
<td>12</td>
<td>25</td>
<td>34</td>
<td>55</td>
<td>3.91</td>
</tr>
<tr>
<td>26. I buy second-hand clothes</td>
<td>29</td>
<td>29</td>
<td>27</td>
<td>32</td>
<td>13</td>
<td>2.78</td>
</tr>
</tbody>
</table>

Note: (.) - phenomenon did not occur
Sources: own elaboration

In only four cases did the average reach a value above 4.0:

- 2. Switch off lights in unused rooms (4.57),
- 16. I do the laundry when the amount needed to load the entire washing machine has been collected (4.48),
- 24. I use a reusable bag when shopping (4.19),
- 15. I buy an adequate number of food items in relation to what I can eat (4.04).

These behaviours are relatively simple and indeed frequently undertaken. What is needed to be underline, these are the same as in case of the HE Teachers.
In 7 cases the mean value from the survey achieved more than 3.5 point:

- 4. I take care of small electronic and technical equipment, thus prolonging its life (3.93)
- 25. I share clothes I don’t need with others (3.91)
- 6. I use water sparingly (3.83)
- 17. I dry my laundry in the open air (3.83)
- 3. Unplug devices when not in use (3.76)
- 10. I use the paper several times (3.7)
- 18. I use public transport for trips up to 30 km (3.63).

In 10 cases, the average did not exceed 3.0. These behaviours required a little more attention, sometimes effort or time.:

- 23. Before throwing things away, I disassemble components that I estimate may be useful (2.9)
- 26. I buy second-hand clothes (2.78)
- 13. I repair broken small electronic and technical equipment (2.78)
- 8. I use renewable energy resources (2.59)
- 12. I use second-hand furniture, repair or refurbish it to make use of (2.53)
- 9. I share equipment with others or use it on a rental basis (2.5)
- 7. I use solar panels or photovoltaic collectors (2.4)
- 11. I use second-hand electronic and technical equipment (2.2)
- 21. I collect parts of other products so that I can make the product I need from them (2.16)
- 19. I ride to work by bike (1.86).

Due to the fact that distribution of variable ‘Mean of Circular behaviours’ (Shapiro-Wilk’s W test $p=0.000$ for $\alpha=0.05$) is not normal, authors decided to apply ANOVA Kruskal-Wallis test, which is non-parametric alternative for one-way ANOVA test. Due to this procedure it was possible to analyse the potential differences between the countries, genders and level of study degree in assessment of circular behaviours. The Kruskal-Wallis ANOVA results allowed to reject of the null hypothesis of no difference119 between countries ($p=0.000$) and gender ($p=0.0265$). In other words, the are statistically significant differences between countries and gender. Interestingly, the results do not differ according to the degree of the study ($p=0.1718$).

8.5. Cross-group analysis

Analysing the potential similarities or differences between target groups, authors decide to compare the results from questions common for all three groups. There were 6 such questions in the survey. First of them concerned familiarity with the term ‘green skills’. Chart 29 presents the results as a frequency of given responses: ‘yes’, ‘no’, and ‘I don’t know’.

119 Tested hypothesis: H_0 – no difference between features, H_1 – existent difference between features.
Chart 29. Knowledge of the term 'green skills' among the target groups

The highest level of knowledge about ‘green skills’ was noticed among SEE representatives (65%). The lowest – among the Students (34%). The Students were also the most undecided in this issue (26% of them don’t know if they are familiarized with the term ‘green skills’). There is a statistically significant difference between the target groups. The Independence Chi² Pearson’s test confirm alternative hypothesis¹²⁰ (p=0.00019).

¹²⁰ Tested hypothesis: H₀ – no difference between features, H₁ – existent difference between features.
Chart 30. Identification of term ‘green skills’ among the target groups

Sources: own elaboration

Chart 30 presents the identification of the term ‘green skills’. Respondents tended to agree on the understanding of this term. In all three groups the most important understanding was related with the last description: ‘knowledge, capacities values and attitudes needed to develop and support a society that reduces the environmental impact of human activities’. This response was preferred mostly by the teachers (82%). Using the Independence Chi2 Pearson’s test, authors were allowed to notice that there is a statistically significant difference between the target groups concerning one dimensions: ‘transition to circular economy (closed loop economy)’ ($p=0.04073$).
The sources of the term ‘green skills’ were different between the groups. They agreed on the degree of relevance of two of the given media: ‘social media’ (as important) and ‘television’ (as not important). The Independence Chi² Pearson’s test showed no difference between the groups ($p=0.94849$ for ‘social media’ and $p=0.86338$ for ‘television’). In the rest cases, there were statistically significant differences between the groups:

- $p=0.00005$ for ‘study program’,
- $p=0.00321$ for ‘scientific papers’,
- $p=0.01071$ for ‘academic conferences’,
- $p=0.01547$ for ‘press’.

Sources: own elaboration
For respondents from target groups the most well-known definition of ‘circular economy’ was description of it as ‘recycling and recovery of materials in production, distribution or consumption processes’ (Chart 32). Over than 70% of respondents in each group chose that answer. Additionally, there were no statistically significant differences between groups in understanding of the term ‘circular economy’.

Assessment of possibility to acquire of green skills was the highest both in SEE representatives (as a place to acquire of the skills by the trainees) and in group of Students (as the field of study) (Chart 33).
Chart 33. Possibility to acquire of green skills among the target groups

![Box plot chart](image)

Sources: own elaboration

The Kruskal-Wallis ANOVA results allowed to reject of the null hypothesis of no difference\(^{121}\) between groups (\(p=0.0155\)). In other words, there are statistically significant differences between groups in assessment of possibility to acquire of green skills.

The last common question for all groups was related with the assessment of functional area of enterprises related with needed extending of ‘green skills’. The groups assessed eight dimensions (Chart 34).

Chart 34. Functional areas of enterprises related with needed extending of ‘green skills’ in the opinion of the target groups

![Box plot chart](image)

\(^{121}\) Tested hypothesis: \(H_0\) – no difference between features, \(H_1\) – existent difference between features.
The first dimension ‘engineering & technical skills’ was assessed the highest in the group of HE Teachers (2.83). The second one – ‘scientific literacy’ – in group of Students (2.85). The third one – ‘operational management skills’ – in the group of HE Teachers (3.09). The fourth one – ‘monitoring skills’ - in the group of Students (3.13). The fifth one – ‘design thinking’ - in the group of HE Teachers (3.3). The sixth one – ‘creativity’ - in the group of SEE (3.4). The seventh one – ‘ability to adapt to future challenges’ - in the group of Students (3.56). The eighth one – ‘resilience awareness’ - in the group of Students (3.66).
Table 22. Results of Kruskal-Wallis ANOVA test in the scope of functional areas of enterprises related with needed extending of ‘green skills’

<table>
<thead>
<tr>
<th>Area of Enterprise</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>engineering & technical</td>
<td>0.0017**</td>
</tr>
<tr>
<td>scientific literacy</td>
<td>0.0010***</td>
</tr>
<tr>
<td>operational management</td>
<td>0.0007***</td>
</tr>
<tr>
<td>monitoring</td>
<td>0.0000***</td>
</tr>
<tr>
<td>design thinking</td>
<td>0.1722</td>
</tr>
<tr>
<td>creativity</td>
<td>0.8311</td>
</tr>
<tr>
<td>ability to adapt to future challenges</td>
<td>0.8098</td>
</tr>
<tr>
<td>resilience awareness</td>
<td>0.3530</td>
</tr>
</tbody>
</table>

Note: statistical significance: \(p<0.05 \) – existing (*), \(p<0.01 \) – high (**), \(p<0.001 \) – very high (***)
Sources: own elaboration

The Kruskal-Wallis ANOVA results allowed to reject of the null hypothesis of no difference\(^\text{122}\) between groups in four cases \(p\)-value marked on bold). In other words, in these four dimensions there are statistically significant differences between groups.

8.6. **Analysis of In-depth interviews**

In accordance with the adopted research methodology, the second tool used in the study was in-depth interviews, of which a total of 15 were conducted. They constituted an additional form of obtaining information, deepening the analysed issues and allowing for clarification of the discussed issues. Due to the layout of the questions included in this tool, they made it possible to obtain information on both the specifics of the operation of a particular social economy entity, as well as green skills to solve specific problems faced by the studied entity. In this sub-chapter, attention is paid primarily to the latter part of the interviews (Table 23).

\(^{122}\) Tested hypothesis: \(H_0 \) – no difference between features, \(H_1 \) – existent difference between features.
Table 23. Green skills diagnosis based on qualitative research carried on among organizations and their activities

<table>
<thead>
<tr>
<th>Diagnosed problem</th>
<th>Description of the use of green skills / Solution</th>
<th>Use in specific areas</th>
<th>Barriers / Comments</th>
<th>Curriculum guidelines</th>
<th>Green skills</th>
</tr>
</thead>
</table>
| • high operating costs:
 − products, intermediates,
 − fuel, energy,
 − use of old inefficient machinery and equipment/service of equipment |
 − training on energy and fuel saving,
 − training on the use of equipment,
 − monitoring of energy consumption,
 − operation of modern machinery,
 − management of vehicle trips |
 − use of machinery, equipment and vehicles |
 − lack of free courses/training,
 − lack of environmental awareness related to the environmental impact of using old machinery and equipment,
 − leading importance of savings in the context of economic calculation rather than environmental concern |
 − the need to include knowledge of the basic functions of the environment,
 − human-environment interaction |
 − Energy skills
 − Management skills |
| • staff costs |
 − efficient use of human resources |
 − learning by doing |
 − training employees in their own, i.e. the employer’s, capabilities |
 − consideration of good practice, case studies |
 − Management skills |
| • lack of staff |
 − ensuring appropriate working conditions,
 − training,
 − educating employees by working with environmentally friendly solutions such as composting waste (from cuttings), separating rubbish |
 − providing technological solutions to facilitate work, i.e. to collect, transport, separate and store waste |
 − cost of purchasing technology,
 − lack of infrastructure (in the case studied, a waste separation site that can be reused) |
 − inclusion of knowledge on waste management in a zero waste spirit |
 − Management skills
 − Design skills
 − Waste management skills |
| • price pressure from customers |
 − savings in operational processes through:
 − price negotiations with individual customers |
 − public tenders,
 − price negotiations with individual customers |
 − costs of technological solutions |
 − knowledge of man-made environmental risks as a basis for |
 − Design skills
 − Management skills
 − Communication skills |
Diagnosed problem

- lack of modern, more efficient equipment, especially for cleaning green spaces,
- high repair costs of older equipment, costs of running equipment. i.e. mowers, hoovers, cars
- the need to raise environmental awareness of packaging
- the lack of widespread availability of products without packaging

Description of the use of green skills / Solution

- developing recycling line concepts,
- investment plans for the bio composting plant,
- waste storage plans,
- courses, staff training

Use in specific areas

- monitoring of fuel consumption,
- training in economic driving
- improving the management of vehicle journeys (elimination of empty kilometres),
- obtaining subsidies for the purchase of more economical and environmentally friendly equipment
- the ability to make a realistic assessment of consumption needs
- ability to minimise resources in practice

Barriers / Comments

- lack of adequate external funding (projects/grants)
- explaining to business partners the rationale for using certain environmentally-friendly solutions and the resulting costs,
- demonstrating by example that green skills are "economically viable"
- the need to present that the reality is not as it is presented by advertising, by supermarket chains,
- the need to focus on local producers, to support traders who live close to us,
- the economic dimension of green skills,
- multi-sectoral cooperation needed

Curriculum guidelines

- inclusion of good practice, case studies and demonstration of economic viability in green solutions
- the economic dimension of green skills,
- multi-sectoral cooperation needed

Green skills

- Procurements skills
- Leadership skills
- Management skills
- Energy skills
- Management skills
- Financial skills
- Waste management skills
- Communication skills
<table>
<thead>
<tr>
<th>Diagnosed problem</th>
<th>Description of the use of green skills / Solution</th>
<th>Use in specific areas</th>
<th>Barriers / Comments</th>
<th>Curriculum guidelines</th>
<th>Green skills</th>
</tr>
</thead>
</table>
| • lack of possibility to select waste properly due to current legislation and available infrastructure (block of flats, no containers for bio fractions, common container for all waste, selective collection points are far away), • lack of staff skills to sort waste | - the need to economise waste management processes at city level (so that it is profitable to sort and recycle)
- sorting skills possessed by the manager
- the ability to apply the circular economy in practice, taught to the youngest from the start of their education | - attempts (unsuccessful) to change this situation, taking some of the segregated waste to remote containers,
- training of employees, implementation of rules | - for the system to function properly, appropriate action is needed at many levels,
- a pricing policy for the collection of segregated and non-segregated waste seems necessary,
- education based on the benefits of the actions taken,
- visible results of appropriate pro-cycling action could encourage others to join in | - the economic dimension of green skills,
- necessary access to infrastructure,
- multi-sectoral cooperation needed | Management skills
Leadership skills
Financial skills
Procurement skills
Waste management skills
Communication skills |
| • local/regional start-ups need support and consultation to pursue | - regional living lab projects, supporting local communities to | - training,
- general activities, | - strength of habit in behaviours such as formal education (knowledge and skills) | Management skills
Communication skills |
<table>
<thead>
<tr>
<th>Diagnosed problem</th>
<th>Description of the use of green skills / Solution</th>
<th>Use in specific areas</th>
<th>Barriers / Comments</th>
<th>Curriculum guidelines</th>
<th>Green skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>innovative and sustainable entrepreneurship</td>
<td>reduce carbon pollution in the city, networking</td>
<td>personal development understood as changes in the daily habits of people in the organisation, recycling system</td>
<td>ordering your own coffee, lack of recycling of packaging, lack of tools to shape the right attitudes</td>
<td>in order to be able to evaluate the day-to-day activities of individuals, national campaigns, updating and adapting existing skills to current needs, more constructive individual efforts by teachers to enable students to receive new examples, contact with different customs and cultures, etc. (case studies, comparative approaches to learning)</td>
<td></td>
</tr>
<tr>
<td>• food waste on the one hand, malnutrition on the other and environmental pollution as a result of throwing away huge amounts of food</td>
<td>raising awareness of food waste, and possible ways to actively reduce it, awareness campaigns, educational programmes, food rescue projects at open farmers’ markets and on the farm, implementing programmes in partnership with large private companies to save food (to charities), sharing the same views, dissemination of information, education and awareness raising; training, activities through which the results/quantities are recorded daily (to calculate how much CO₂ would be released into the atmosphere, donation of surplus food</td>
<td>lack of integration of activities into personal and professional life</td>
<td>more educational modules in the formal education programme that raise awareness and "green skills"</td>
<td>Design skills, Waste management skills, Communication skills</td>
<td></td>
</tr>
<tr>
<td>Diagnosed problem</td>
<td>Description of the use of green skills / Solution</td>
<td>Use in specific areas</td>
<td>Barriers / Comments</td>
<td>Curriculum guidelines</td>
<td>Green skills</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>----------------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>• lack of information activities and meaningful strategic planning on local and regional environmental problems</td>
<td>- awareness-raising campaigns for various stakeholders in the local community (businesses, schools, etc.), - information and active participation of citizens to make them aware of how their daily lives are affected, - internal education and personal development so that the organisation can grow</td>
<td>- environmental activities and through volunteering, - communication to maintain continuous and close relationships with beneficiaries, - education, - development of quantitative and qualitative project evaluation tools reflecting environmental, social and economic impacts, - exploration and implementation of innovative ways of intervention and participation of clients and beneficiaries, - follow up and attention to information by organisations with more experience, - inspiration and mentoring by innovators</td>
<td>- processing difficulties towards the next step, - updating theory in practice</td>
<td>- inclusion of experiential and active participation parameters, creating the concept of "giving back" in a social environment, which is in line with the principles of the circular economy</td>
<td>- Design skills - Leadership skills - Communication skills</td>
</tr>
<tr>
<td>Diagnosed problem</td>
<td>Description of the use of green skills / Solution</td>
<td>Use in specific areas</td>
<td>Barriers / Comments</td>
<td>Curriculum guidelines</td>
<td>Green skills</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>• cities facing climate change, social inequalities, etc.,</td>
<td>- design and implementation of urban experiments focusing on urban and participatory development,</td>
<td>- providing space, tools and support for the community - environmental, cultural</td>
<td>- too few companies and organisations emphasising green skills development, combining digital skills with critical and soft skills development,</td>
<td>- bring the student community into contact with green skills, especially through practice (cooperation organisations - universities), but at the same time working with primary and secondary school students to discuss sustainable urban development and the circular economy</td>
<td>- Design skills</td>
</tr>
<tr>
<td>• the need to pay attention to all the different areas of the environment, society</td>
<td>- community building;</td>
<td>and social projects</td>
<td></td>
<td></td>
<td>- Leadership skills</td>
</tr>
<tr>
<td>and economy, including solving problems by involving citizens</td>
<td>- awareness raising to engage citizens,</td>
<td></td>
<td></td>
<td></td>
<td>- Management skills</td>
</tr>
<tr>
<td></td>
<td>- promotion of green skills among staff and community members in pursuit of urban regeneration</td>
<td></td>
<td></td>
<td></td>
<td>- City planning skills</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Communication skills</td>
</tr>
<tr>
<td>• people are disconnected from each other and from nature - they don’t take the</td>
<td>- the everyday life is daily provision of green skills workshop, sharing our partners’ workshops info to the</td>
<td>- hosting travelers from all over the world who are invited to live together, as an</td>
<td>- some of the guests can not stand living in the wilderness (they leave soon after their arrival, which contradicts with the organization’s perception and way of learning green skills, that is from nature itself)</td>
<td>- not expecting anything</td>
<td>- Management skills</td>
</tr>
<tr>
<td>time to get to know one or the other</td>
<td>organization’s network, in order to find opportunities for workshops, trainings etc.,</td>
<td>international community, together with housekeeper living in nature,</td>
<td></td>
<td></td>
<td>- Communication skills</td>
</tr>
<tr>
<td></td>
<td>- stimulating the interaction among humans, non-humans, and the nature,</td>
<td>- guests find ways to have a life according to sustainable standards,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- learning a different way of life and gaining new and green skills, which can later be used, after going back home</td>
<td>- creating a community, within which, everyone is equal and encouraged to be responsible for his/her own visions and projects,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosed problem</td>
<td>Description of the use of green skills / Solution</td>
<td>Use in specific areas</td>
<td>Barriers / Comments</td>
<td>Curriculum guidelines</td>
<td>Green skills</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>• lack of alternative production and consumption mode</td>
<td>– bringing people in contact, highlighting alternative aspect of working, where the economic profit is not the only goal, – raising awareness among members through relevant workshops, – provision of green and fair trade products (the energy consumption, the CO₂ emissions of the products that is used), – supporting the low carbon local products by small producers; grocery stores- promoting the local and bio products as spaces to develop</td>
<td>– the operation of the café, several workshops, a free of charge open cinema, grocery store with local and fair-trade products, among others</td>
<td>– green skills are not developed a lot, and are needed as a response to difficult situation in a country, ideas and methodologies in formal education fail to support the students for the current conditions of real world</td>
<td>– as there is a complete absence of green skills in formal education curricula, an endeavor needs to be undertaken to fulfil the gap</td>
<td>– Leadership skills – Management skills – Communication skills</td>
</tr>
<tr>
<td>• climate change, hazardous chemicals, the need for sustainable water management, the need for responsible fashion or environmentally</td>
<td>– turquoise management, – strong commitment to the task at hand, – creating a sense of empowerment among employees,</td>
<td>– equipping with knowledge - organizing workshops, events, meetings, lectures, – conducting advocacy activities towards local, European or</td>
<td>– frequent lack of time, problem with work-life balance to focus on additional green skills acquisition</td>
<td>– greater cooperation between educational institutions and the social environment, “external” educators, activists should be</td>
<td>– Leadership skills – Management skills – Communication skills</td>
</tr>
<tr>
<td>Diagnosed problem</td>
<td>Description of the use of green skills / Solution</td>
<td>Use in specific areas</td>
<td>Barriers / Comments</td>
<td>Curriculum guidelines</td>
<td>Green skills</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>conscious agricultural production and the supply chain</td>
<td>- facilitation between young and older people</td>
<td>international authorities, - providing appropriate tools, creating a database and then keeping the data of "clients" (people involved) throughout the process of becoming an activist, - running an online or stationary shop</td>
<td>invited to lessons or classes more often, - environmental and social education should be included in the core curriculum from an early age, including practical learning of soft skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• low level of nutrition for children, • catering companies in the municipality delivered poor quality meals, • a lack of specialised equipment for the municipal staff/community company, which resulted in a poor appearance of the municipality as well as many protests or comments from residents, • an ageing population in the municipality and a lack of a medically</td>
<td>- regular information on energy savings, water consumption, organisation of work so as to have as little impact as possible on the environment, but also on the running costs of the cooperative, so as not to waste food in the catering business or fuel in the overall operation</td>
<td>- catering services, city cleaning, maintenance of green spaces, - rehabilitation of the elderly, - employee blockage defined as shock/fear due to the complexity of the issue in simple activities: saving energy, water, avoiding food waste</td>
<td>at primary level - acquiring not only the ability, but above all the habit to save, to separate waste from an early age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosed problem</td>
<td>Description of the use of green skills / Solution</td>
<td>Use in specific areas</td>
<td>Barriers / Comments</td>
<td>Curriculum guidelines</td>
<td>Green skills</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>• adaptation of cities to climate change (adaptation of water infrastructure, modernisation of buildings to reduce CO₂ emissions and slow down the process of global warming)</td>
<td>- projects (unpaid and paid), business activities, - raising funds for training projects and networking for local authorities, - seeking solutions, e.g. through dissemination of adaptation methods, seeking solutions that reconcile the different interests of groups involved in solving a problem, - recruiting staff focused on knowledge, competences and sensitivity in the environmental field, - staff training, - refraining from handing out gadgets, serving vegetarian meals at meetings, promoting the use of public transport</td>
<td>- activities for smaller settlements, when the involvement of people from the local community is required, - conducting e.g.: environmental project campaigns, e.g. in cooperation with local authorities learning to build rain gardens</td>
<td>- difficulties in finding an environmentally sensitive person with project management skills (dedicated team - independent, flexible, with skills)</td>
<td>- Specific systemic solutions for the development of ecological sensitivity, competences, knowledge and concrete actions in the field of environmental protection, - treating climate change knowledge as general knowledge (in all fields of study, more in-depth) rather than sector-specific knowledge, - balancing the theoretical educational path with the practical dimension of learning</td>
<td>- Leadership skills - Management skills - Communication skills</td>
</tr>
</tbody>
</table>

Source: own work based on in-depth interviews
The analysis of the in-depth interviews made it possible to diagnose key problems related to the operation of the studied social economy entities. Generally speaking, these problems relate to insufficient efficiency of operation in economic and environmental terms (the so-called integrated efficiency) of the studied entities, resulting from various internal constraints (the potential of the studied entities, their skills and internal possibilities to improve their situation, their ability to perceive opportunities and possibilities present in the environment), as well as external ones, determined by the closer and further environment. The problems and barriers identified during the study formed the basis for the formulation of guidelines for circular economy curricula. Of key importance is the suggested need to emphasise in the educational process not only cross-sectoral cooperation in the realisation of the circular economy, but also greater cooperation between educational institutions and the social environment. The education process should be based on case studies and an orientation towards finding cost-effective solutions for green projects. It is also important for social and environmental education to be included in the core curriculum from an early age and to include practical learning of soft skills.

Based on the information obtained from social economy entities implementing their activities in environmental areas (e.g., rural development, renewable energy, reuse and recycling, sustainable housing and agriculture) or incorporate green practices and environmentally friendly approaches into their operations, the scope of green skills possessed or needed was analysed in detail (table). In this way, the typology of green skills proposed by the authors was prepared.

It should be emphasized that this typology is the result of the practice of the activities of specific organizations and the declared needs for the development of green skills, based on their experiences. These skills should be arranged as follows, taking into account the operational scope of the activities of the analysed entities:

1. **Management skills** related to operational processes in the core business (differentiated according to the area of the organization’s activities, such as the organization of events); human resource; energy and fuel use management;
2. **Design skills** related to organization of production/service delivery processes on the basis of technological solutions allowing to increase their efficiency.
3. **Waste management skills** - effective use and management of waste by the organization.
4. **Energy skills** related to energy efficiency.
5. **Leadership skills** related to labour coordination; stimulating local communities, institutional entities, customers to certain activities.
6. **Communications skills** related to promotion of ideas, products, values; establishing and sustaining cooperation
7. **Procurement skills** related to making appropriate offers for different customers (institutional client, enterprise, individual)
8. **Financial skills** related to saving and managing money.
9. **City planning skills** related to revitalization of urban space with cooperation among analysed organization, local authorities and society.

The interviews conducted and the typology of green skills created on the basis of them, confirm the validity of the definitional view of green skills presented above (p. 20 and next),
which, however, are slightly expanded here: “Green skills are skills needed in all sectors, in all types of organizations (government, non-government, business, etc.), which on the one hand should help understand the issue of green transformation and make it possible to carry it out (including the need for changes related to legal instruments, financial, administrative, management), and, on the other hand, enable the development of environmentally friendly solutions in production, consumption and investment processes, creating and offering environmentally friendly products and services sensitizing a wide range of stakeholders to this issue and at the same time activating them to appropriate practices.

8.7. Verification of the Research Hypothesis

In the first research hypothesis, the Authors assumed that Social Economy Entities, despite their significant involvement in green activities, do not demonstrate significant skills and competencies in having and developing green skills relevant to market needs (geared towards revenue generation). Research results indicate that SEE representatives know the term ‘green skills’ (65.4%), as well as they identify it as ‘knowledge, capacities, values and attitudes needed to develop and support a society that reduces the environmental impact of human activities’ (also 65.4%). They treat ‘circular economy’ mostly as ‘recovery of materials’ (79%). This may indicate a moderate level of knowledge in these aspects and an identification with technical elements. Assessment of having the opportunity to acquire green skills by people working/internships in their organization was at average level (mean=3.1). This may indicate a moderate level of that possibility arising from the nature of operation of surveyed SEE.

Assessing the possibility of acquisition of ‘green skills’ at the placement site, SEE representatives noticed, that it is related mostly with ‘ability to adapt to future challenges’ (mean=3.51) and ‘resilience awareness’ (mean=3.49). Unfortunately, this does not indicate a business mindset, but rather an emphasis on soft skills.

Ability to justify of the cost-effectiveness of environmental solutions in economic, social and ecological aspects, was assessed by the SEE representatives on moderate level. The average did not exceed 4.0 and was respectively: ‘3.14’ for economic, ‘3.61’ for social and ‘3.71’ for ecological aspect. Additionally, 74% of SEE representatives declared that they were not able to generate revenue through their green economy activities.

These results may indicate that green skills are not fully developed in these SEE. The first research hypothesis H_1 can thus be accepted (Table 24).

<table>
<thead>
<tr>
<th>Table 24. Summary of research hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis</td>
</tr>
<tr>
<td>H_1: Social economy entities, despite their significant involvement in green activities, do not demonstrate significant skills and competencies in having and developing green skills relevant to market needs (geared towards revenue generation).</td>
</tr>
<tr>
<td>H_2: Deficiencies in green SEE skills are a barrier to entering into cross-sectoral cooperation, acquiring circular business projects that benefit the environment, the economy and the development of the SEE themselves.</td>
</tr>
<tr>
<td>H_3: There is a need to modify educational programs, in order to increase support so that higher education centers provide support for skills formation as a driver of green transformation.</td>
</tr>
</tbody>
</table>

Sources: own elaboration
In the **second research hypothesis**, the Authors assumed that deficiencies in green SEE skills are a barrier to entering into cross-sectoral cooperation, acquiring circular business projects that benefit the environment, the economy and the development of the SEE themselves. The research results indicate that the assessment of ability to find the partners (e.g. business or public institutions) for carrying on the environmental projects is moderate (mean=3.2). The respondents from SEE group noticed, that the most important barriers have external and ‘technical’ characters (ex. red tape-bureaucracy - 54.3%; institutional constraints - 41.9% and lack of appropriate legal frameworks - 39.5%). To a lesser extent, the lack of partnership was due to a lack of skills (ex. lack of economic knowledge of the members of the organisation - 29.6%, lack of environmental knowledge among members of the organisation - 28.4%). However, this problem was reported by almost 30% of the respondents, so the hypothesis examined H_2 cannot be explicitly rejected.

In the **third research hypothesis**, the Authors assumed that there is a need to modify educational programs, in order to increase support so that higher education centers provide support for skills formation as a driver of green transformation. The research results indicate that the HE Teachers and Students are agree that study plans are the most important opportunity to acquire ‘green skills’ (HE Teachers: 3.48, Students: 3.28). Quite a high percentage of teachers (over than 30%) claims that in educational programmes there are too much theory. This may indicate a need for enrichment or replacement of content in study programmes with more practical, case-based studies. It is worth noting that teachers also suggest more practice to shape the link between environmental and economic issues (27.2%). In an additional option, teachers identified group work as an element in developing these skills. When teaching students to argue environmental issues with economic benefits, teachers indicated that they primarily use also ‘case studies’ in form of presentations (51.5%). As a second tool, teachers indicated ‘evaluation of actors’ decisions’ (39.4%). The assessment of this situation is similarly in Students group. They noted that the most important obstacle is related with too much theory (49.6%). Students claim also for not enough number of case studies (34.04%). These results may indicate that there is a need to correct the study programmes and enrich them in the practical prats. The third research hypothesis H_3 can thus be accepted.
Chapter 9. The theoretical model of the SDG labs programme

Socially Driven Green Labs programme is founded on designing an innovative and holistic educational programme that will offer HE teachers in SE related fields all the necessary skills, methodologies, and knowledge to foster the next generation of green social entrepreneurs.

The programme offers new, blended learning and flexible training and learning pathways that incorporate people-centred and multistakeholder methodologies (Living Labs methodology) and hands-on approaches (simulation-based learning) for cultivating SE teachers’ and students’ green literacy and skills and establishing meaningful green cooperation’s schemes within various green SE stakeholders. The educational project will offer multiple blended learning elements (MOOC, teachers’ online handbook, summer school, online pocket courses, face-to-face training workshops) and ready to use resources (SDG labs Digital Gallery) that will offer a teachers’ and students’ training programme, both virtual and physical activities.

The SDG Labs educational programme are to be designed to trigger the attempts towards:

1) defining the current and future green skills shortages in SEEs;
2) providing an online depository with a wide range of case studies and ready to use co-creation activities, tools and resources and a digital package of lecture plans supporting social and green entrepreneurial competence development;
3) equipping HE teachers with an innovative and flexible training opportunity on how to integrate environmental-related issues into SE curricula; the MOOC “Social Economy for a green transition” will explore how certain key SE business areas are currently leading the way towards green growth;
4) supplying students with knowledge and skills that are aligned with the requirements of green labour market.

Innovativeness of SDG Labs educational programme consists of the following results that are expected:

1) SDG Labs Digital Gallery that will provide an online depository with a wide range of ready to use, and interactive co-creation activities, tools and resources and a digital package of lecture plans supporting social and green entrepreneurial competence development, and an online screening tool with case studies of SEEs that operate in economic sectors with environmental objectives;
2) SDG Labs capacity building programme that will provide to HE teachers flexible training opportunity on how to integrate environmental-related issues into SE curricula, equip students with knowledge and skills that are aligned with the requirements of green labour market and establish local green cooperation’s schemes within various SE stakeholders; the massive open online course “Social Economy for a green transition” are to be delivered to teachers;
3) SDG Labs business simulation models that will offer a package of more than 20 interactive learning environments acting as mindtools for SE students to design and experiment freely on their own environmental simulation SE business models and understand the consequences of real business decisions;
4) SDG Labs students’ upskilling programme that will offer a blended learning package incorporating both theoretical and practical elements of green skills literacy and environmental sustainability; set of online pocket courses that will provide an exciting learning to students as they experiment throughout the different phases of the SDG Labs (define, ideate, experiment, validate) and the on-campus learning programme that will be realised through the summer school serving as a test-bed for the overall educational programme.

SDG Lab Digital Gallery

SDG Lab Digital Gallery is a set of interactive teaching materials on environmental studies and development of green skills, designed to provide mentors and teachers with theoretical and practical knowledge on developing students’ green skills. It will serve as one stop shop for teaching material, ranging from open educational resources and case studies to articles and videos. In terms of pedagogical criteria, the resource is easy to understand and has clear learning objectives, free and interactive, catchy, and engaging the learner’s interest, and relevant to recent climate change and environmental debates.

This kind of resource should provide the learner with a holistic idea about environmental change and green skills, it develops the knowledge in key areas related to environmental issues, help the learner critically evaluate key issues of climate change. There to a range of deliverables to be produced within developing this source of project activities. Those are: 50 online resources that will enable HE teachers to develop their students’ green skills, a set of interactive teaching materials on environmental studies and development of green skills. All sorts of those resources are to be carefully mapped and selected tested and finetuned, translated into five languages, and publicized on the online digital gallery on a dedicated space of the project’s website.

SDG Labs capacity building programme for HE teachers (MOOC, handbook)

The objective of this module of the SDG Labs educational project is to train HEI teacher to apply the SDG Labs programme and integrate environmental-related issues into SE curricula.

Basing on the needs of the HEI teachers derived from research study, the content development teacher’s handbook will be delivered on how to launch and run SDG Lab and how to participate and contribute throughout the defining, ideating, experimenting, and validating phases. Moreover, quick guide for the MOOC will be provided. As well as teacher’s guide on using simulation-based learning.

MOOC “Social Economy for a green transition” will be developed with the structure and themes formulated after based on research study, within such areas as: renewable energy, sustainable housing, sustainable food systems, circular economy. Then, the MOOC testing and finetuning will be undertaken with the use of internal testing among partners and finetuning by one of the partner universities. Handbook testing within the teaching staff is to be provided by partner universities, throughout online workshops organized by partner universities. Moreover, a series of training workshops to familiarize educators and make them apply and implement the SDG Labs educational programme, with a blended formulation (face-to-face training seminar and coaching sessions, webinars, mentoring and guidance sessions).
SDG Labs business simulation for students

The business simulation models will offer a package of more than 20 interactive learning environments that will act as mindtools for SE students to design and experiment freely on their own environmental simulation SE business models.

SDG Labs for students (on-line and on-campus learning programme for summer school)

The core of the SDG Lab upskilling programme is that students interact and collaborate with teachers and green SEEs and are getting prepared for applying forward-looking skills of the green business sector and better explore the potential of the SE for achieving green growth.

The upskilling programme offers a blended learning package incorporating both theoretical and practical elements of green skills literacy and environmental sustainability for students, such as for example a set of pocket courses that will provide an online learning journey to students and the on-campus learning programme, that will be realised through the “SDG Labs Summer School”, and will act as a test-bed for the overall educational programme - co-creating their own SDG business models (e.g. sustainable farming, renewable energy solutions) with on-the ground green business actors (green SEEs).
Conclusions

The process of green transition encompasses the involvement of governments, local governments, enterprises and non-governmental organizations, local social communities, each of whom has its own role to play. The green transformation implemented by promoting the idea of responsibility is vivant in the activities of market entities, and visible by leaving the model of linear production and consumption in favour of a closed-circuit economy. Their aim is to avoid the generation of waste and to keep raw materials in the economy for as long as possible to reduce the human impact on the environment. NGOs, local communities, state as well as enterprises, those related to changing the urban space to a sustainable one, and those implementing environmentally friendly production processes, apply a diversity of instruments for green transformation. A particular involvement in various types of environmentally friendly projects and a special potential introduced within the changes of green transition is by social economy entities. Self-sustainability, value-creation, quick assessment of the unfulfilled needs and aspirations of society followed by innovations and adaptations, establishment of self-supporting organization aimed toward earning profit through collective efforts of their teams to create social benefit is what the hybrid organizations, pursuing triple bottom lines and creating the common good by making profits and adding to social value, offer. This kind of hybrid organizations (social economy entities, including social enterprises) supports engendering social capital to encourage more advanced social interactions and learning processes in societies of diverse structures. Green entrepreneurship executed by SEE fosters identifying objectives and building a movement towards creating a better environment, raising a voice for a green products and practices, making people realize their responsibility, launching in the markets and creating new markets of environmentally friendly products and services, targeting the environment friendly goods to customers able to pay for the value of the product contributing to cleaner environment, aiming toward a support from the government and other institutions with the potential to influence policy decision makers. Promoting green entrepreneurship remains vital within the ethos and structures of the hybrid organization that are conductive through their context of day-to-day practice within which citizens are oriented towards social and environmental services and products. SEE are in their primary aim and structure explicitly environmental (because of their social sensitivity, because of the costs of their activities) in that they recycle, promote organic food and so on. And what is even more important here is that their endeavors to achieve social aims are through the most environmentally sustainable manners. That is why those types of organizations hide a potential to orientate citizens towards environmental considerations.

The necessity of the circular economy to emerge increased the pressure to adjust skills of workers demanded by the industries concentrating on more ecologically sustainable technologies. Growing need for the skills to perform ecologically-oriented tasks call for equipping graduates more with green skills, both technical and soft ones. As social entrepreneurship education is about transmitting not just the abstract knowledge on competence identifying social market opportunities from teacher to students but also the readiness to engage in the launching of social enterprises as a result of social learning process, there is a great role of students’ co-creating shared communities of practice identified as being a stimulator of new business ideas and business models. The learning communities are intended to trigger the social relationships potential between experts and learners to stimulate innovative formats of participatory and interactive learning activities. Shift from
paradigm of “service” to a paradigm of participation intensifies students’ responsibility to not simply complete the task, but to comprehend its potential impact on society.

Getting engaged in participatory observation of a real-world, reflecting upon the observation by series of discussions, then getting into the interactions with managers of social enterprises and being instructed to getting involved in solving a social problem, identifying social entrepreneurship opportunities for start-ups call for educational set of tools. In effect, it is a kind of call for apparatus that can enable to incubate ideas, and can be conceptualized as a form of a laboratory space.

The research results undertaken at the very beginning of the project aiming to define the current and future green skills shortages in SEEs and recognize the solutions and educational approaches for restructuring social economy university curricula revealed that:

- green skills may not be fully developed in SEE;
- deficiencies in green SEE skills cannot be considered explicitly as a barrier to entering into cross-sectoral cooperation, acquiring circular business projects that benefit the environment, the economy and the development of the SEE themselves;
- there is a need to modify educational programs, in order to increase support so that higher education centers provide support for skills formation as a driver of green transformation;
- and, study plans are the most important opportunity to acquire ‘green skills’.

This is a framework to be followed by a blended methodological approach, supplying both theoretical and empirical insights, and setting the basis for further creating needs-oriented training programmes for both SE educational providers and students. The laboratory space being designed within this educational project offers flexible training and learning pathways that incorporate people-centred and multistakeholder methodologies (Living Labs methodology) and hands-on approaches (simulation-based learning) for cultivating SE teachers’ and students’ green literacy and skills and establishing meaningful green cooperation’s schemes within various green SE stakeholders. It will include MOOC, teachers’ online handbook, online pocket courses, face-to-face training workshops and ready to use resources that will offer a teachers’ and students’ training programme, both virtual and physical activities, including summer school.
Bibliography

32. Departament Ekonomii Społecznej i Solidarnej, (2022). *Założenia resortowego programu pn. Odporność i rozwój ekonomii społecznej i przedsiębiorczości społecznej na lata 2022-

76. OECD, (2016). *Policy brief on scaling the impact of social enterprises*, Luxembourg.

List of elements

List of Schemes

Scheme 1. Linking the low carbon economy, the circular economy and the blue economy to the green economy ... 8
Scheme 2. Subjects involved in green transformation and their corresponding instruments . 8
Scheme 3. Reasons for the need for skills due to the transformation towards a green economy .. 21
Scheme 4. The dimensions of economy where new skills will be required ... 22
Scheme 5. Selected definitions of green skills .. 23
Scheme 6. Way of thinking in terms of green skills for jobs ... 25
Scheme 7. Categories of green skills .. 26
Scheme 8. Green skills in transition processes to development of the green economy 27
Scheme 9. Conceptual model of evolving toward sustainable entrepreneurship with the emphasis on citizens’ green competences .. 35

List of Tables

Table 1. The average number of years of SEE operation ... 41
Table 2. Identification of term ‘green skills’ .. 42
Table 3. Sources of come across of term ‘green skills’ ... 42
Table 4. Functional areas of enterprises related with needed extending of ‘green skills’ 44
Table 5. Functional areas of enterprises related with needed extending of ‘green skills’ 46
Table 6. Decision concerning implementation of a good project due to the reasons 48
Table 7. Number of responses related with circular behaviours taken up by SEE 50
Table 8. The metrics information about higher education teachers group 51
Table 9. Identification of term ‘green skills’ .. 52
Table 10. Sources of come across of term ‘green skills’ ... 53
Table 11. Functional areas of enterprises related with needed extending of ‘green skills’ ... 54
Table 12. Opportunity to acquire ‘green skills’ based on the chosen educational elements by countries .. 55
Table 13. Functional areas of enterprises related with needed extending of ‘green skills’ ... 57
Table 14. Number of responses related with circular behaviours taken up by the teachers . 61
Table 15. The metrics information about higher education students group 63
Table 16. Identification of term ‘green skills’ .. 64
Table 17. Sources of come across of term ‘green skills’ ... 64
Table 18. Functional areas of enterprises related with needed extending of ‘green skills’ ... 66
Table 19. Opportunity to acquire ‘green skills’ based on the chosen educational elements by countries .. 67
Table 20. Functional areas of enterprises related with needed extending of ‘green skills’ ... 68
Table 21. Number of responses related with circular behaviours taken up by the students . 71
Table 22. Results of Kruskal-Wallis ANOVA test in the scope of functional areas of enterprises related with needed extending of ‘green skills’ .. 79
Table 23. Green skills diagnosis based on qualitative research carried on among organizations and their activities .. 80
Table 24. Summary of research hypothesis ... 90

List of Charts
Chart 1. Knowledge of the term 'green skills' ... 41
Chart 2. Identification of term ‘circular economy’ ... 43
Chart 3. Working/internships aimed at developing ‘green skills’ in SEE 43
Chart 4. Assessment of acquisition of ‘green skills’ at the placement site 44
Chart 5. Level of benefits for SEE taking on employees with established green skills 45
Chart 6. Ability to justify the cost-effectiveness of environmental solutions in three dimensions ... 46
Chart 7. Ability to find partners for environmental projects ... 47
Chart 8. The main drivers to work towards a green economy as a way of meeting societal needs and as a source of income for your organisation ... 49
Chart 9. Frequency of taking up circular behaviours by the surveyed SEE 50
Chart 10. Knowledge of the term 'green skills' ... 52
Chart 11. Identification of term ‘circular economy’ ... 53
Chart 12. Implementation of courses aimed at developing ‘green skills’ 54
Chart 13. Opportunity to acquire ‘green skills’ based on the chosen educational elements. 55
Chart 14. Main area of activity of the entities where students do internships/placements and acquire ‘green skills’ .. 56
Chart 15. Assessment of acquisition of ‘green skills’ at the placement site 57
Chart 16. Assessment of weaknesses seen in educational programmes in terms of improving ‘green skills’ .. 58
Chart 17. Tools for shaping students' ability to associate economic and environmental issues ... 58
Chart 18. Tools for shaping students' ability to argue environmental issues with economic benefits .. 59
Chart 19. Tools for shaping students' cooperative skills .. 59
Chart 20. Frequency of taking up circular behaviours by the surveyed teachers 60
Chart 21. Knowledge of the term 'green skills' ... 63
Chart 22. Identification of term ‘circular economy’ ... 65
Chart 23. Implementation of courses aimed at developing ‘green skills’ 65
Chart 24. Opportunity to acquire ‘green skills’ based on the chosen educational elements. 66
Chart 25. Main area of activity of the entities where students do internships/placements and acquire ‘green skills’ .. 67
Chart 26. Assessment of acquisition of ‘green skills’ at the placement site 68
Chart 27. Assessment of weaknesses seen in educational programmes in terms of improving ‘green skills’ .. 69
Chart 28. Frequency of taking up circular behaviours by the surveyed teachers 70
Chart 29. Knowledge of the term 'green skills' among the target groups 73
Chart 30. Identification of term ‘green skills’ among the target groups 74
Chart 31. Sources of come across of term ‘green skills’ .. 75
Chart 32. Knowledge of the term ‘circular economy’ among the target groups 76
Chart 33. Possibility to acquire of green skills among the target groups 77
Chart 34. Functional areas of enterprises related with needed extending of ‘green skills’ in the opinion of the target groups .. 77
Questionnaires for target groups

<table>
<thead>
<tr>
<th>QUESTIONS for SEE</th>
<th>QUESTIONS for HE Teachers</th>
<th>QUESTIONS for Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Are you familiar with the term green skills? [1-yes, 2-no, 3-I don’t know]</td>
<td>Are you familiar with the term green skills? [1-yes, 2-no, 3-I don’t know]</td>
<td>Are you familiar with the term green skills? [1-yes, 2-no, 3-I don’t know]</td>
</tr>
<tr>
<td>2) What do you identify the term green skills with?</td>
<td>What do you identify the term green skills with?</td>
<td>What do you identify the term green skills with?</td>
</tr>
<tr>
<td>1 - transition to low-carbon economy</td>
<td>1 - transition to low-carbon economy</td>
<td>1 - transition to low-carbon economy</td>
</tr>
<tr>
<td>2 - Transition to circular economy (closed loop economy)</td>
<td>2 - Transition to circular economy (closed loop economy)</td>
<td>2 - Transition to circular economy (closed loop economy)</td>
</tr>
<tr>
<td>3 - tackling climate change</td>
<td>3 - tackling climate change</td>
<td>3 - tackling climate change</td>
</tr>
<tr>
<td>4 - new environmentally friendly economic sectors</td>
<td>4 - new environmentally friendly economic sectors</td>
<td>4 - new environmentally friendly economic sectors</td>
</tr>
<tr>
<td>5 - green products/services</td>
<td>5 - green products/services</td>
<td>5 - green products/services</td>
</tr>
<tr>
<td>6 - knowledge, capacities, values and attitudes needed to develop and support a society that reduces the environmental impact of human activities</td>
<td>6 - knowledge, capacities, values and attitudes needed to develop and support a society that reduces the environmental impact of human activities</td>
<td>6 - knowledge, capacities, values and attitudes needed to develop and support a society that reduces the environmental impact of human activities</td>
</tr>
<tr>
<td>3) Where have you come across the term green skills?</td>
<td>Where have you come across the term green skills?</td>
<td>Where have you come across the term green skills?</td>
</tr>
<tr>
<td>1 - study programme</td>
<td>1 - study programme</td>
<td>1 - study programme</td>
</tr>
<tr>
<td>2 - scientific papers</td>
<td>2 - scientific papers</td>
<td>2 - scientific papers</td>
</tr>
<tr>
<td>3 - academic conferences</td>
<td>3 - academic conferences</td>
<td>3 - academic conferences</td>
</tr>
<tr>
<td>4 - press</td>
<td>4 - press</td>
<td>4 - press</td>
</tr>
<tr>
<td>5 - social media</td>
<td>5 - social media</td>
<td>5 - social media</td>
</tr>
<tr>
<td>6 - television</td>
<td>6 - television</td>
<td>6 - television</td>
</tr>
<tr>
<td>7 - other, which?...</td>
<td>7 - other, which?...</td>
<td>7 - other, which?...</td>
</tr>
<tr>
<td>4) What do you identify the term circular economy with?</td>
<td>What do you identify the term circular economy with?</td>
<td>What do you identify the term circular economy with?</td>
</tr>
<tr>
<td>1 - waste reduction</td>
<td>1 - waste reduction</td>
<td>1 - waste reduction</td>
</tr>
<tr>
<td>2 - natural resources reusing</td>
<td>2 - natural resources reusing</td>
<td>2 - natural resources reusing</td>
</tr>
<tr>
<td>3 - recycling and recovery of materials in production, distribution or consumption processes</td>
<td>3 - recycling and recovery of materials in production, distribution or consumption processes</td>
<td>3 - recycling and recovery of materials in production, distribution or consumption processes</td>
</tr>
<tr>
<td>QUESTIONS for SEE</td>
<td>QUESTIONS for HE Teachers</td>
<td>QUESTIONS for Students</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>4 - isolates the national economy from other economies</td>
<td>4 - isolates the national economy from other economies</td>
<td>4 - isolates the national economy from other economies</td>
</tr>
<tr>
<td>5 - uses only what has already been used in products</td>
<td>5 - uses only what has already been used in products</td>
<td>5 - uses only what has already been used in products</td>
</tr>
<tr>
<td>5) To what extent people working/internships in your organisation have the opportunity to acquire green skills?</td>
<td>To what extent are courses aimed at developing green skills implemented in the fields of study at your university?</td>
<td>To what extent is there an opportunity to acquire and develop green skills in your field of study?</td>
</tr>
<tr>
<td>[1 - in none, 2, 3, 4, 5 - fully]</td>
<td>[1 - in none, 2, 3, 4, 5 - fully]</td>
<td>[1 - in none, 2, 3, 4, 5 - fully]</td>
</tr>
<tr>
<td>6) If any green skills are developed in education, please name the course(s):</td>
<td>If any green skills are developed in education, please name the course(s):</td>
<td>If any green skills are developed in education, please name the course(s):</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>7) To what extent are green skills needed in the given functional areas of enterprises?</td>
<td>To what extent are green skills needed in the given functional areas of enterprises?</td>
<td>To what extent are green skills needed in the given functional areas of enterprises?</td>
</tr>
<tr>
<td>[1 - in none, 2, 3, 4, 5 - fully]</td>
<td>[1 - in none, 2, 3, 4, 5 - fully]</td>
<td>[1 - in none, 2, 3, 4, 5 - fully]</td>
</tr>
<tr>
<td>− production</td>
<td>− production</td>
<td>− production</td>
</tr>
<tr>
<td>− transport and storage</td>
<td>− transport and storage</td>
<td>− transport and storage</td>
</tr>
<tr>
<td>− sales</td>
<td>− sales</td>
<td>− sales</td>
</tr>
<tr>
<td>− finance</td>
<td>− finance</td>
<td>− finance</td>
</tr>
<tr>
<td>− advertising</td>
<td>− advertising</td>
<td>− advertising</td>
</tr>
<tr>
<td>other which?...</td>
<td>other which?...</td>
<td>other which?...</td>
</tr>
<tr>
<td>8) How would you rate the opportunity to acquire green skills based on the following educational elements at your university?</td>
<td>How would you rate the opportunity to acquire green skills based on the following educational elements at your university?</td>
<td>How would you rate the opportunity to acquire green skills based on the following educational elements at your university?</td>
</tr>
<tr>
<td>[1 - in none, 2, 3, 4, 5 - fully]</td>
<td>[1 - in none, 2, 3, 4, 5 - fully]</td>
<td>[1 - in none, 2, 3, 4, 5 - fully]</td>
</tr>
<tr>
<td>− study plans</td>
<td>− study plans</td>
<td>− study plans</td>
</tr>
<tr>
<td>− learning outcomes</td>
<td>− learning outcomes</td>
<td>− learning outcomes</td>
</tr>
<tr>
<td>− internships/placements</td>
<td>− internships/placements</td>
<td>− internships/placements</td>
</tr>
<tr>
<td>9) To what extent do employees/trainees/interns have an environmental sensitivity* (environmentally friendly behaviour) before starting their apprenticeship/internship?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUESTIONS for SEE</td>
<td>QUESTIONS for HE Teachers</td>
<td>QUESTIONS for Students</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>[1 - in none, 2, 3, 4, 5 - fully]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10) How beneficial would it be for your organisation to take on employees with established green skills?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1 - in none, 2, 3, 4, 5 – fully]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11) To what extent are you able to justify the cost-effectiveness of environmental solutions in terms of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– economic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– social</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– ecological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1 none, 2, 3, 4, 5 - fully]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12) How would you rate your ability to find partners, e.g. business or public partners for environmental projects?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1 - in none, 2, 3, 4, 5 - fully]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13) What is the main area of activity of the entities where students do internships/placements and acquire green skills?</td>
<td>1 – production</td>
<td></td>
</tr>
<tr>
<td>1 – production</td>
<td>2 – services</td>
<td></td>
</tr>
<tr>
<td>2 – services</td>
<td>3 – trading</td>
<td></td>
</tr>
<tr>
<td>3 – trading</td>
<td>4 – other, which?...</td>
<td></td>
</tr>
<tr>
<td>14) Has a good (environmentally and economically justified) project ever not been implemented by your organisation because of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– lack of economic knowledge of the members of the organisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– lack of environmental knowledge among members of the organisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– lack of organisational skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUESTIONS for SEE</td>
<td>QUESTIONS for HE Teachers</td>
<td>QUESTIONS for Students</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>− lack of persuasive skills of members of the organisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>− lack of relationship (cooperation) skills of members of the organisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>− institutional constraints</td>
<td></td>
<td></td>
</tr>
<tr>
<td>− red tape (bureaucracy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>− lack of appropriate legal frameworks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1 - yes, 2 - no]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15) **To what extent do employees and students acquire green skills in your organisation?**

[1 - in none, 2, 3, 4, 5 - fully]

− engineering and technical skills
− scientific literacy - broad-based and necessary for innovation
− operational management skills
− monitoring skills - skills required to assess compliance with technical criteria and legal standards relating to environmental protection
− design thinking (realising projects based on the ability to see the source of problems and real customer/client needs)
− creativity
− ability to adapt to future challenges
− resilience awareness of progressing climate changes and the impact of production/service processes on them
other, which? ...

To what extent do students acquire green skills on placement?

[1 - in none, 2, 3, 4, 5 - fully]

− engineering and technical skills
− scientific literacy - broad-based and necessary for innovation
− operational management skills
− monitoring skills - skills required to assess compliance with technical criteria and legal standards relating to environmental protection
− design thinking (realising projects based on the ability to see the source of problems and real customer/client needs)
− creativity
− ability to adapt to future challenges
− resilience awareness of progressing climate changes and the impact of production/service processes on them
other, which? ...

16) **Have you been able to generate revenue through your green economy activities. How much did they amount to annually?**

- Failed to generate
<table>
<thead>
<tr>
<th>QUESTIONS for SEE</th>
<th>QUESTIONS for HE Teachers</th>
<th>QUESTIONS for Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>- (amount)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17) What are the main drivers for you to work towards a green economy as a way of meeting societal needs?
 - Statutory tasks
 - Opportunity to earn money
 - Cross-sectoral cooperation
 - Educational mission
 - Social mission
 - Other, which? ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18) Do you check the effects of your courses in terms of green skills acquired?
 [1 - yes, 2 - no]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19) How do you measure the effects of your courses in terms of green skills acquired?
 ..</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20) What is the biggest driver of your green transformation efforts as a source of income for your organisation?
 - Statutory tasks
 - Opportunity to earn money
 - Cross-sectoral cooperation
 - Educational mission
 - Social mission
 - Other, which? ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21) What weaknesses do you see in terms of improving green skills in educational programmes?
 – too much theory
 – no link between economic and environmental issues</td>
<td>What weaknesses do you see in terms of improving green skills in educational programmes?
 – too much theory
 – no link between economic and environmental issues</td>
<td></td>
</tr>
<tr>
<td>QUESTIONS for SEE</td>
<td>QUESTIONS for HE Teachers</td>
<td>QUESTIONS for Students</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>- not enough case studies</td>
<td>- not enough case studies</td>
<td>- I see no shortcomings</td>
</tr>
<tr>
<td>- other, which? ...</td>
<td>- other, which? ...</td>
<td>- I see no shortcomings</td>
</tr>
<tr>
<td>22) Do you recognise the learning subjects that have most enhanced your green skills?</td>
<td>How have they improved these skills?</td>
<td>What subjects still need to be introduced into the study plan to improve green skills?</td>
</tr>
<tr>
<td>23) To what extent do you perceive gaps in the green skills of trainees or university graduates?</td>
<td>- I see no shortcomings</td>
<td></td>
</tr>
<tr>
<td>24) How do you shape students' ability to associate economic and environmental issues?</td>
<td>- credit/examination</td>
<td>- presentations: case studies</td>
</tr>
<tr>
<td></td>
<td>- presentations</td>
<td>- role play</td>
</tr>
<tr>
<td></td>
<td>- case studies</td>
<td>- evaluation of actors' decisions</td>
</tr>
<tr>
<td></td>
<td>- role play</td>
<td>- field activities (practical classes)</td>
</tr>
<tr>
<td></td>
<td>- field activities (practical classes)</td>
<td>- other, which? ...</td>
</tr>
<tr>
<td>25) How do you shape students' ability to argue environmental issues with economic benefits?</td>
<td>- presentations: case studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- role play</td>
<td>- evaluation of actors' decisions</td>
</tr>
<tr>
<td></td>
<td>- field activities (practical classes)</td>
<td>- other, which? ...</td>
</tr>
</tbody>
</table>
27) QUESTIONS for SEE

How do you shape students’ cooperative skills?
- presentations: case studies
- role play
- evaluation of actors’ decisions
- field activities (practical classes)
- working for social entities
- other, which?

28) QUESTIONS for HE Teachers

Please indicate the frequency of your organisation’s environmental activities:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Never</td>
<td>I buy recyclable products</td>
</tr>
<tr>
<td>2 - Rarely</td>
<td>Switch off lights in unused rooms</td>
</tr>
<tr>
<td>3 - Sometimes</td>
<td>Unplug devices when not in use</td>
</tr>
<tr>
<td>4 - Often</td>
<td>I take care of small electronic and technical equipment, thus prolonging its life</td>
</tr>
<tr>
<td>5 - Always</td>
<td>When choosing electronic and technical equipment I am guided by its energy class</td>
</tr>
</tbody>
</table>

Please indicate the frequency of your environmental activities:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Never</td>
<td>I buy recyclable products</td>
</tr>
<tr>
<td>2 - Rarely</td>
<td>Switch off lights in unused rooms</td>
</tr>
<tr>
<td>3 - Sometimes</td>
<td>Unplug devices when not in use</td>
</tr>
<tr>
<td>4 - Often</td>
<td>I take care of small electronic and technical equipment, thus prolonging its life</td>
</tr>
<tr>
<td>5 - Always</td>
<td>When choosing electronic and technical equipment I am guided by its energy class</td>
</tr>
</tbody>
</table>

QUESTIONS for Students

Please indicate the frequency of your environmental activities:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Never</td>
<td>I buy recyclable products</td>
</tr>
<tr>
<td>2 - Rarely</td>
<td>Switch off lights in unused rooms</td>
</tr>
<tr>
<td>3 - Sometimes</td>
<td>Unplug devices when not in use</td>
</tr>
<tr>
<td>4 - Often</td>
<td>I take care of small electronic and technical equipment, thus prolonging its life</td>
</tr>
<tr>
<td>5 - Always</td>
<td>When choosing electronic and technical equipment I am guided by its energy class</td>
</tr>
</tbody>
</table>

Please indicate the frequency of your environmental activities:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Never</td>
<td>I buy recyclable products</td>
</tr>
<tr>
<td>2 - Rarely</td>
<td>Switch off lights in unused rooms</td>
</tr>
<tr>
<td>3 - Sometimes</td>
<td>Unplug devices when not in use</td>
</tr>
<tr>
<td>4 - Often</td>
<td>I take care of small electronic and technical equipment, thus prolonging its life</td>
</tr>
<tr>
<td>5 - Always</td>
<td>When choosing electronic and technical equipment I am guided by its energy class</td>
</tr>
</tbody>
</table>

- I use water sparingly
- I use solar panels or photovoltaic collectors
- I use renewable energy resources
- I share equipment with others or use it on a rental basis (I do not buy)
- I use the paper several times (e.g. one side printed on, I use it for the dirty copy)
- I use second-hand electronic and technical equipment (e.g. leased laptop)
- I use second-hand furniture, repair or refurbish it to make use of
- I repair broken small electronic and technical equipment (e.g. telephone, electric kettle)
<table>
<thead>
<tr>
<th>QUESTIONS for SEE</th>
<th>QUESTIONS for HE Teachers</th>
<th>QUESTIONS for Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>− We use second-hand furniture, repair or refurbish it to make use of</td>
<td>− I repair large electronic and technical equipment (e.g. computers)</td>
<td>− I repair large electronic and technical equipment (e.g. computers)</td>
</tr>
<tr>
<td>− We repair broken small electronic and technical equipment (e.g. telephone, electric kettle)</td>
<td>− I buy an adequate number of food items in relation to what I can eat</td>
<td>− I buy an adequate number of food items in relation to what I can eat</td>
</tr>
<tr>
<td>− We repair large electronic and technical equipment (e.g. computers)</td>
<td>− I do the laundry when the amount needed to load the entire washing machine has been collected</td>
<td>− I do the laundry when the amount needed to load the entire washing machine has been collected</td>
</tr>
<tr>
<td>− I repair large electronic and technical equipment (e.g. computers)</td>
<td>− I dry my laundry in the open air</td>
<td>− I dry my laundry in the open air</td>
</tr>
<tr>
<td>− I buy an adequate number of food items in relation to what I can eat</td>
<td>− I use public transport for trips up to 30 km</td>
<td>− I use public transport for trips up to 30 km</td>
</tr>
<tr>
<td>− I do the laundry when the amount needed to load the entire washing machine has been collected</td>
<td>− I ride to work by bike</td>
<td>− I ride to work by bike</td>
</tr>
<tr>
<td>− I dry my laundry in the open air</td>
<td>− I buy clothes made from natural raw materials (cotton, silk, linen)</td>
<td>− I buy clothes made from natural raw materials (cotton, silk, linen)</td>
</tr>
<tr>
<td>− I use public transport for trips up to 30 km</td>
<td>− I collect parts of other products so that I can make the product I need from them</td>
<td>− I collect parts of other products so that I can make the product I need from them</td>
</tr>
<tr>
<td>− I ride to work by bike</td>
<td>− I use used plastic packaging for other purposes</td>
<td>− I use used plastic packaging for other purposes</td>
</tr>
<tr>
<td>− I buy clothes made from natural raw materials (cotton, silk, linen)</td>
<td>− Before throwing things away, I disassemble components that I estimate may be useful</td>
<td>− Before throwing things away, I disassemble components that I estimate may be useful</td>
</tr>
<tr>
<td>− I collect parts of other products so that I can make the product I need from them</td>
<td>− I use a reusable bag when shopping</td>
<td>− I use a reusable bag when shopping</td>
</tr>
<tr>
<td>− I use used plastic packaging for other purposes</td>
<td>− I share clothes I don’t need with others</td>
<td>− I share clothes I don’t need with others</td>
</tr>
<tr>
<td>− Before throwing things away, I disassemble components that I estimate may be useful</td>
<td>− I buy second-hand clothes</td>
<td>− I buy second-hand clothes</td>
</tr>
<tr>
<td>− I use a reusable bag when shopping</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

29) Metrics

Country:
Number of years of operation:
Legal form of social economy entity:
Industry (area of activity, e.g.: ...)

Country:
Age:
Gender:
Number of years in occupation:
Position:
Volunteer experience:

Country:
Region:
Age:
Gender:
Year of study:
Degree:
Form of study (full-time/part-time):
Work experience:
Volunteer experience:
In-depth interview with representatives of social economy entities

The purpose of the interview is to gather information on the factors influencing circular business decisions and to identify the importance of green skills of employees and members of social economy entities in the process of green transformation and entry of these entities into the so-called green sectors of the economy. The interview is a part of international research conducted among social economy entities and in the higher education sector responsible for social economy education. Implementation of the research is one of the elements of the project “Harnessing the potential of the Social Economy towards a green transformation through the establishment of Socially Driven Green Labs within Universities”, whose leader is Pedagogical University of Cracow.

Questions:
1. How are green skills developed in your organization among its participants?
2. Do people in your organization have opportunities to learn green skills through special courses/workshops outside your organization?
3. What difficulties do you see in getting people in your organization to learn green skills?
4. Do you think that green skills are necessary, or are the so-called future skills sufficient (competences that allow solving complex problems with the use of modern digital solutions, adapting to new ways of organizing work processes; competences, which allow to adapt to new professions; competences that allow for the ability to act in a self-organizing way)?
5. Is there any area of your functional activity where green skills are particularly needed?
6. Do similar organizations as yours put emphasis on green skills development?
7. Are there any significant tangible benefits from developing green skills in your organization?
8. Does developing green skills among participants of the organization require additional financial resources?
9. What are your expectations in terms of education system (higher education, postgraduate studies) in the context of real improvement of green skills and competencies? What conditions must be met by the education system in this regard?
10. Are green skills being used to implement projects that are part of your organization’s efforts to create a circular economy?
11. Is your organization pursuing partnerships with others for the circular economy and what role do green skills play in this endeavour?